
Supplemental Information

EXTENDED EXPERIMENTAL PROCEDURES

Cell Culture
All in vitro derived cell types were derived from HUES64 (Chen et al., 2009). Human embryonic stem cells were expanded on murine

embryonic fibroblasts (Global Stem) in KO-DMEM (Life Technologies) containing 20% Knockout serum replace (Life Technologies)

and FGF2 (10 ng/ml) (Millipore). Cultures were passaged by enzymatic dissociation using Collagenase IV (1 mg/ml) (Life Technolo-

gies). Prior to differentiation, cells were plated on matrigel-coated plates (BD Biosciences) and cultured in mTeSR1 (Stem Cell Tech-

nologies) for 3 to 4 days. Endoderm differentiation was induced in Advanced RPMI (Invitrogen), 0.5% FBS (Hyclone), Activin A

(100 ng/ml) (R&D) and WNT3A (50 ng/ml) (R&D). HUES64- derived hepatoblasts (dHep) were induced by culturing day 5 endoderm

in RPMI media containing B27 (1X), FGF2 (10ng/ml) (Millipore) and BMP4 (20 ng/ml) (R&D) for five days, and collected after

10 days total of differentiation. Hepatocyte-like cells were derived by culturing the HUES64-derived hepatoblasts in Lonza hepato-

cyte culture media containing 10ng/ml of HGF (R&D) for 5 additional days, or 15 days total. Mesoderm differentiation was induced by

the addition of media consisting of in DMEM/F12 (Life Technologies), 0.5% FBS (Hyclone), Activin A (100ng/ml) (R&D) (for the first

24 hr only), BMP4 (100 ng/ml) (R&D), VEGF (100 ng/ml) (R&D) and FGF2 (20 ng/ml) (Millipore). To induce osteoblast differentiation,

the day 5mesoderm population was dissociated with accutase and replacted onmatrigel coated plates (BD) in EGM-2media (Lonza)

for 7 days, or 12 days total. Ectoderm differentiation was induced using A83-01 (2um) (Tocris), PNU 74654 (2um) (Tocris) and Dor-

somorphin (2um) (Tocris), DMEM/F12 (Life Technologies) containing 15% Knock serum replacer (Life Technologies). Neurectoderm

differentiation was induced by switching the day 5 ectoderm population to media containing 3 mM CHIR99021 (TOCRIS), 10 mM

SU5402 (TOCRIS), and 10 mMDAPT (TOCRIS), and collected after 6 more days, or 11 days total. N2-supplement (Life Technologies)

was added to cells in 25% increments every other day beginning four days after the initiation of ectoderm differentiation. For all cell

types, media was changed daily.

Antibodies
ChIP was performed using the following antibodies: H3K4me3 (Millipore, 07-473, Lot DAM1623866), H3K27ac (Abcam, ab4729, Lot

509313), H3K27me3 (Millipore, 07-449, Lot DAM1514011), H3K36me3 (Abcam, ab9050, Lot 499302), H3K4me1 (Abcam, ab8895,

Lot 659352), H3K9me3 (Abcam, ab8898, Lot 484088), POU5F1 (Abcam, ab19857), SOX2 (Santa Cruz, sc-17320X), NANOG (R&D,

AF1997) and FOXA2 (R&D, AF2400).

For live cell FACS isolation, cells were stained for 30 min on ice with the following antibodies directed toward extracellular surface

proteins: CD326-PerCP-Cy5 (clone EBA1) (BD Biosciences), CD56-PE (clone NCAM16.2) (BD Biosciences), and CD184-PE-Cy5

(clone 12G5) (BD Biosciences).

Immunostaining was done with the following primary antibodies: FOXA2 (R&D, AF2400), GATA2 (Santa Cruz, sc-16044) SOX17

(R&D, AF1924), PAX6 (Covance, PRB-278P) and HNF4a (Abcam, ab41989). Cells were fixed in 4% Formaldehyde, incubated in pri-

mary antibody overnight at 4�C, and then incubated in secondary antibody for 1 hr at room temperature. DNA was detected using

Hoechst 33342 trihydrochloride trihydrate (Invitrogen).

FACS Analysis
FACS was done on a BD FACSAria II using linear FSC and SSC scaling, followed by height and width-based doublet discrimination.

The viability of the populations was assessed by Propidium Iodide staining, with the positively stained populations being excluded

from the sorting gates. Compensation was calculated using FACS Diva autocompensation algorithms, and supplemented bymanual

compensation to correct for autofluorescence.

Genomic DNA Isolation
Flash-frozen human tissues or cell pellets were lysed at 55�C overnight in 300–600 ml lysis buffer (10 mM Tris-HCl pH 8.0, 10 mM

EDTA, 10 mM NaCl and 0.5% wt/vol SDS) supplemented with 50 ng/ml DNase-free RNase (Roche) and 1 mg/ml proteinase K

(NEB). After extraction with an equal volume of phenol:chlorofom:isopropanol alcohol (25:24:1; Invitrogen) and addition of 0.5 ml

(20 mg/ml) glycogen (Roche) and 1/20 vol 5 M NaCl, DNA was precipitated with 2.5 vol ethanol, spun down (30 min/16,000 g) at

4�C andwashed with 70% ethanol. DNAwas re-suspended in 30–100 ml of TE buffer (10mMTris-HCl pH 8.0, 1mMEDTA) and quan-

tified using a Qubit fluorometer and a dsDNA BR Assay Kit (Life Technologies).

WGBS Library Construction
Genomic DNA (1–5 mg) was fragmented to 100–500 bp using a Covaris S2 sonicator 9 times for 60 s at duty cycle 20%, intensity 5 and

200 cycles per burst. DNA fragments were cleaned up using a QIAGEN PCR purification kit. End-repair reactions (100 ml) contained

1x T4 DNA ligase buffer (NEB), ATP, 0.4 mM dNTPs, 15 units T4 DNA polymerase, 5 unites Klenow DNA polymerase, 50 units T4

polynucleotide kinase (all NEB) and were incubated for 30 min. at 19�C and 15 min. For some libraries we used a dCTP-free

dNTP mix instead of all four dNTPs during for the end-repair to avoid artificially unmethylated sites. Adenylation was performed

for 30 min. at 37�C in 50 ml 1x Klenow buffer containing 0.2 mM dATP and 15 units Klenow exo� (NEB). Adenylated DNA fragments

and methylated paired-end adapters (purchased from ATDBio) were incubated overnight at 16�C in a 50 ml reaction containing 5,000
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units concentrated T4 DNA ligase (NEB) and 3 mM of adapters. Each enzymatic reaction was terminated and cleaned-up by phenol/

chloroform extraction and ethanol precipitation as described above.

To determine unmethylated cytosine conversion rates and methylated cytosine over-conversion rates by sodium bisulfite treat-

ment, adaptor-ligated fully methylated and fully unmethylated internal control DNA fragments (Table S7), were spiked into WGBS

library preparation at a molar ratio (spike-in to WGBS library) of 1:16,000 each. Adaptor-ligated DNA of 270-370 bp, corresponding

to DNA insert sizes of 150-250 bp, was size-selected on a 2.5% Nusieve (3:1) agarose gel (Lonza). Two consecutive bisulfite con-

versions were performed with an EpiTect Bisulfite Kit (QIAGEN) following the protocol specified for DNA isolated from FFPE tissue

samples. One of 40 ml bisulfite-converted DNA was used in each of four 10-ml reactions to determine the minimal PCR cycle number

for library amplification. PCR reactions contained 0.5 U of PfuTurboCx Hotstart DNA polymerase (Agilent technologies), 1 ml of 10x

PCR buffer, 250 mM dNTPs, 1.5 mM of Primer 1.0 and 2.0 (Illumina). The thermocycling profile was 2 min. at 95�C followed by 5-15

cycles of 30 s at 95�C, 30 s at 65�C, 1 min. at 72�C, and a final 7 min. extension at 72�C. Preparative library amplification using the

empirically determined number of PCR cycles was performed in eight 25-ml aliquots, each containing 3 ml of bisulfite-converted DNA,

1.25 U of PfuTurboCx Hotstart DNA polymerase, 2.5 ml of 10x PCR buffer, 250 mM of dNTP, 1.5 mM of Primer 1.0 and 2.0. PCR prod-

ucts were pooled and purified twice using Agencourt AMPure XP SPRI Beads (Beckman Coulter) as per the manufacturer’s instruc-

tions. The final library DNA was quantified using a Qubit fluorometer and a Quant-iT dsDNA HS Kit (Invitrogen). The insert size was

checked on a 4%–20%non-denaturing polyacrylamide gel (Bio-Rad). Paired-end sequencingwith 100 base readswas performed on

an Illumina Hiseq 2000 followed the manufacturer’s guidelines.

WGBS Data Processing and Analysis
WGBS raw sequencing reads were aligned using maq in bisulfite mode against human genome version hg19/GRCh37, discarding

duplicate reads. DNA methylation calling was performed based on an extended custom software pipeline published previously for

RRBS (Bock et al., 2011). To ensure comparability of region DNAmethylation levels across all samples, only CpGs covered byR 5x in

85% of the samples qualified for the computation of region DNA methylation levels. To assess the DNA methylation state of various

genomic regions, we resorted to our previously published protocol estimating a genomic region’s methylation state as the coverage

weighted average across all CpGs within each region. Subsequently, we averaged a region’s DNA methylation level over replicates.

Differentially methylated regions (DMRs) were defined as exhibiting significantly (p% 0.05, Fisher’s exact test) different DNAmethyl-

ation levels of at least 0.1.

Many gene regulatory elements (GREs) are marked by spatially highly constrained reduced DNAmethylation levels. It has recently

been suggested that besides CpG islands, which are mostly unmethylated (UMR) a second class of GRE is marked by low to inter-

mediate DNAmethylation (IMR) (Stadler et al., 2011). We reasoned that these regions might be of particular regulatory importance in

our system and might be missed by looking at histone modification enrichments alone. Therefore we adopted a similar Hidden Mar-

kov model approach as proposed in Stadler et al. (2011) to identify regions of reduced DNA methylation level. Briefly, we utilized a

three state HiddenMarkovModel operating on themethylation levels of eachCpG in the human genome. Each state’s emission prob-

abilities for the DNAmethylation levels weremodeled by a normal distribution. Themodel was trained on all CpGs of chromosome 19

in the HUES64 data set using an adaption of the well known Baum Welch algorithm to incorporate the normal distribution (Press,

2007). After initial parameter estimation, we utilized the approach reported by Stadler et al. (2011) to determine the FDR for IMR re-

gions and adapted the initial parameter estimates for the IMR and HMR states to finally 0.01(UMR), 28.8 (IMR), 81.6 (highly methyl-

ated, HMR), yielding an FDR of 2%. This parameter set was subsequently used to segment all WGBS data sets. Finally, we used the

Viterbi algorithm to compute themost probable path through each chromosome separately and assigned the CpG states accordingly

to either unmethylated, intermediate or highly methylated. Subsequently, we merged neighboring CpGs residing in the same state

and being less than 200bp apart into unmethylated, intermediate, or highly methylated regions. Only regions harboring more than 3

CpGs were retained for subsequent analysis. The resulting region set is more likely to pick up DMRs due to the highly spatially con-

strained nature of themarkedGRE (often 200-400bp) which easily gets masked by a coarse grained tiling based approach. The HMM

inference framework was implemented as custom software in python (http://python.org/) and extended to incorporate other state

distribution types. To determine differentially methylated regions between two samples, we followed our previously established pro-

tocol (Bock et al., 2011).

ChIP and ChIP-Seq Library Production
Cells collected by FACS were crosslinked in 1% formaldehyde for 15 min at room temperature, with constant agitation, followed by

quenching with 125mM Glycine for 5 min at room temperature with constant agitation. Nuclei were isolated and chromatin was

sheared using Branson sonifier until the majority of DNA was in the range of 200-700 base pairs. Chromatin was incubated with anti-

body overnight at 4�C, with constant agitation.

Co-immunoprecipitation of antibody-protein complexes was completed using Protein A or Protein G Dynabeads for 1 hr 4�C, with

constant agitation. ChIPs were completed using previously reportedmethods (Mikkelsen et al., 2010). Sequencing library production

details can be found in the Extended Experimental Procedures. Sequencing libraries were submitted for sequencing on the Illumina

Hiseq 2000.

Immunoprecipitated DNA was end repaired using the End-It DNA End-Repair Kit (Epicenter), extended using a Klenow fragment

(30-50 exo) (NEB), and ligated to sequencing adaptor oligos (Illumina). Each library was then PCR-amplified using PFU Ultra II Hotstart
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Master Mix (Agilent), and a size range of 300-600 was selected for sequencing. We confirmed binding of OCT4, NANOG and SOX2 at

the NANOG promoter using qPCR (Table S8).

ChIP-BS-Seq Library Construction
DNA was first subjected to end-repair in a 30-ml reaction containing 6 units T4 DNA polymerase, 2.5 units DNA Polymerase I (Large

Klenow Fragment), 20 units T4 Polynucleotide Kinase (all New England Biolabs), dATP, dCTP, dGTP, and dTTP (0.125mMeach), and

13 T4 Ligase buffer with ATP for 30 min at 20�C. DNA was then adenylated in a 20-ml reaction containing 10 units Klenow Fragment

(30/50 exo-) (New England Biolabs), 0.5 mM dATP and 1 3 NEB buffer 2 for 30 min at 37�C. DNA was then ligated to preannealed

Illumina genomic DNA adapters containing 5-methylcytosine instead of cytosine (ATDBio) using T4 DNA ligase (New England

Biolabs).

Adaptor-ligated DNA fragments were subsequently purified by phenol extraction and ethanol precipitation and size-selected on

gel. 50 ng sheared and dephosphorylated Escherichia coli K12 genomic DNA was added to adaptor-ligated DNA as carrier during

size-selection and bisulfite conversion. DNA was run on 2.5% Nusieve 3:1 Agarose (Lonza) gels. Lanes containing marker (50 bp

ladder; New England Biolabs) were stained with SYBR Green (Invitrogen), and size regions to be excised were marked with tooth-

picks and adaptor-ligated DNA fragments from 200–400 and 400–550 bpwere excised. DNAwas isolated from gel using theMinElute

Gel Extraction kit (QIAGEN). The low and high libraries were kept separate in subsequent steps.

Adaptor-ligated and size-selected DNA was subjected to two subsequent 5-h bisulfite treatments using the EpiTect Bisulfite kit

(QIAGEN) following the manufacturer’s protocol for DNA isolated from FFPE tissue samples. PCR amplification was done

with 1.25 units Pfu Turbo Cx Hotstart DNA Polymerase (Stratagene), primer LPX 1.1 and 2.1 (0.3 mM each), dNTPs (0.25 mM

each), 1 3 Turbo Cx buffer. Amplified libraries were purified with the MinElute PCR Purification kit (QIAGEN) and subsequently

purified from gel essentially as described above; whole gels were stained with SYBR Green, and no carrier DNA was added. Final

libraries were analyzed on analytical 4%–20% TBE Criterion precast gels (BioRad), and measured by Quant-iT dsDNA HS Assays

(Invitrogen) (protocol adapted from Brinkman et al. (2012).

ChIP-Seq Data Processing and Analysis
ChIP-Seq data were aligned to the hg19/GRCh37 reference genome using bwa version 0.5.7 (Li and Durbin, 2009) with default

parameter settings. Subsequently, reads were filtered for duplicates and extended by 200bp. Visualization of read count data

was performed by converting raw bam files to .tdf files using IGV tools (Thorvaldsdóttir et al., 2013) and normalizing to 1million reads.

In order to identify regions enriched for chromatin modifications we employed a two step approach, first identifying all regions

enriched for any chromatin modification. Next, using this comparatively small region set, we determined the quantitative enrichment

level as well as significance of enrichment using a Poisson background model based on the whole cell extract (WCE). Finally, we

utilize conservative enrichment and significance cutoffs to binarize our enrichment signal in order to increase robustness and simplify

subsequent analysis.

First, we segmented the genome into non-overlapping windows and classified each window into either enriched or no enriched.

This analysis was conducted separately for two groups, 1. H3K27ac, H3K4me3 using 200bp windows and H3K27me3, H3K9me3,

K3K4me1 using 400bp windows. To compute the enrichment statistics on the window level, we determined the number of unique

insert size extended sequence tags whose midpoint was located within the window of interest for the ChIP-Seq track of interest

as well as theWCE. Next, we used the poissonmodel proposed inMikkelsen et al. (2010) to determine nominal p-value of enrichment

and computed the enrichment over the WCE. Only windows enriched at a significance level below p < 10�5 (in case replicates were

used both had to fulfill this criterion) and an enrichment above background greater than 3 (in case replicates were used, the average

enrichment had to be greater than 2.5) were retained. However, for most enrichment analysis we employed only the replicate with the

strongest signal.

Next, enriched windows within a distance of 850bp were merged into larger regions. Regions smaller than 400bp (600bp for broad

marks) after merging were discarded as due to noise and regions greater than 10kb were split. This procedure was carried out for

three groups of histone ChIP-Seq tracks separately: H3K4me3 &H3K27ac, H3K4me1 and H3K27me3 & H3K9me3 across all 4

cell types. The resulting three lists of enriched regions were then merged in a hierarchical fashion: first regions identified based on

H3K4me3&H3K27ac and H3K4me1, retaining all H3K4me3&H3K27ac regions but merging or splitting enriched H3K4me1 regions.

After completion of this initial processing step, regions were again filtered for minimal size discarding regions smaller than 400bp.

Next, the same procedure was repeated for the newH3K4me3, H3K27ac, H3K4me1 region set and the H3K27me3, H3K9me3 region

list. Finally, the resulting list was merged with the regions classified as UMRs and IMRs, adding only regions not overlapping with any

region identified so far. This procedure gave rise to the region catalog used in subsequent analysis.

In the second processing step, comparative analysis of ChIP-Seq experiments and assignment of chromatin states was carried

out, excluding regions enriched for H3K9me3 only. First, for each region in the region catalog the significance and enrichment

over WCE was determined using Poisson statistics (Mikkelsen et al., 2010) applied to the duplicate filtered and insert size extended

sequencing tag counts overlapping each identified region. Regions with tag counts deviating at a significance level of p% 0.001 from

the WCE and exhibiting enrichment over WCE R 3 were classified as enriched. We chose these moderately stringent thresholds in

order also pick up chromatin state changes that occur only in a subset of the investigated cell population and therefore have lower

signal. However, this comes at the expense of a higher false positive rate. Next, we compared the enrichment levels for all four cell
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types (hESC, dEC, dME, dEN) for each epitope separately. To that end we used the Poisson model based approach proposed in

Mikkelsen et al. (2010) and defined regions deviating by R2.5 fold at a significance level of p % 0.01 as being different. Next, we

reconciled these differential enrichment calls with our enrichment over background classification. Since in our setting weweremostly

concerned with incorrectly called differences between cell states (false positives) due to heterogeneity in the distinct populations and

varying ChIP-Seq library complexity, we redefined regions that were classified as enriched in hESC and not enriched in one of the

differentiated cell types but exhibiting no significant difference according to our differential analysis as being enriched in the differ-

entiated cell type under study. This approach yields a lower false positive rate in terms of dynamics at the expense of a higher false

negative rate. However, at this point it still remains to be determined what magnitudes of differences in chromatin modifications are

actually meaningful. In this sense, our binary classification approach is rather conservative and relies on previously established

observations. Subsequently, we classified each genomic region identified in this way into one of 11 epigenetic states based on

the binary classification of enrichment levels for the various modifications. DNA methylation levels were not taken into account

when histone modification based states were assigned. Only states devoid of significant enrichment for one of the histone modifi-

cations were classified based on DNA methylation levels. Genomic regions were associated with their nearest RefSeq gene using

the R package ChIPpeakAnno (Zhu et al., 2010) and classified into promoter, intragenic, distal (<50kb from TSS and not promoter)

and intergenic.

TF ChIP-Seq Analysis
For OCT4, SOX2, NANOGand FOXA2 aligned read fileswere processedwithmacs version 1.4 (Zhang et al., 2008) using the following

parameters: -g 2.7e9–tsize = 36–pvalue = 1e-5–keep-dup = 1 and the HUES64WCE as input control. All other parameters were left at

their default setting. For our 25bp libraries, tsize was set to 25. FDRwas calculated usingmacs built in function essentially comparing

the original read count distribution with a randomly shuffled distribution. Following this initial peak calling, only peaks significant at an

FDR of 0.05 and present in both replicates were retained. As a second replicate for our OCT4 ChIP-Seq experiment we took advan-

tage of publically available OCT4 data (Kunarso et al., 2010).

ChIP BS-Seq Analysis
For the FOXA2 ChIP-bisulfite sequencing experiment, the bisulfite treated ChIP library was processed similarly to the WGBS pro-

cessing described above and subsequently overlaid with the peak calling results from the FOXA2-ChIP-Seq library that was not bisul-

fite treated.

RNA-Seq Data Processing and Differential Expression Analysis
Strand specific libraries were constructed as described in the main text using a strand specific method (Levin et al., 2010). Reads

weremapped to the human genome (hg19) using TopHat v2.0.6 (Trapnell et al., 2009) (http://tophat.cbcb.umd.edu) with the following

options: ‘‘—library-type firststrand’’ and ‘‘—transcriptome-index’’ with a TopHat transcript index built from RefSeq. Transcript

expression was estimated with an improved version of Cuffdiff 2 (Trapnell et al., 2013) (http://cufflinks.cbcb.umd.edu). Cuffdiff

was run with the following options: ‘‘—min-reps-for-js-test 2 –dispersion-method per-condition’’ against the UCSC iGenomes

GTF file from Illumina (available at http://cufflinks.cbcb.umd.edu/igenomes.html). Theworkflow used to analyze the data is described

in detail in Trapnell et al. (2012) (alternate protocol B).

To identify a gene or transcript as DE, Cuffdiff 2 tests the observed log-fold-change in its expression against the null hypothesis of

no change (i.e., the true log-fold-change is zero). Because of measurement error, technical variability, and cross-replicate biological

variability might result in an observed log-fold-change that is nonzero, Cuffdiff assesses significance using amodel of variability in the

log-fold-change under the null hypothesis. Thismodel is described in detail in Trapnell et al. (2013). Briefly, Cuffdiff two constructs, for

each condition, a table that predicts howmuch variance there is in the number of reads originating from a gene or transcript. The table

is keyed by the average reads across replicates, so to look up the variance for a transcript using the table, Cuffdiff estimates the reads

originating from that transcript, and then queries the table to retrieve the variance for that number of reads. Cuffdiff 2 then accounts

for read mapping and assignment uncertainty by simulating probabilistic assignment of the reads mapping to a locus to the splice

isoforms for that locus. At the end of the estimation procedure, Cuffdiff 2 obtains an estimate of the number of reads that originated

from each gene and transcript, along with variances in those estimates. The read counts are reported along with FPKM values and

their variances. Change in expression is reported as the log fold change in FPKM, and the FPKM variances allow the program to

estimate the variance in the log-fold-change itself. Naturally, a gene that has highly variable expression will have a highly variable

log-fold-change between two conditions.

The modifications made to Cuffdiff 2 improve sensitivity in calling differentially expressed (DE) genes and transcripts while main-

taining a low false positive rate. They stem from the method used to calculate the variability in the log fold change in expression. In

Trapnell et al., Cuffdiff 2 used the ‘‘deltamethod’’ to estimate the variance of the log fold change estimate for a gene or transcript. This

method yields a simple equation that takes as input the mean and variance of the transcript’s expression in two conditions and pro-

duces a variance for the log fold change. However, the equation contains no explicit accounting for the number of replicates used to

produce those estimates – they are assumed to be perfectly accurate.

The improved version of Cuffdiff 2 more accurately estimates the variance in the log-fold-change using simulated draws from the

model of variance in expression for each of the two conditions. Imagine an experiment that has n replicates in condition A and m
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replicates in condition B. To estimate the distribution of the log-fold-change in expression for a gene G under the null hypothesis,

Cuffdiff first draws n times from the distribution of expression of G according to the algorithm’s model of expression. Cuffdiff then

takes the average of the n draws to obtain an expression ‘‘measurement.’’ Then, Cuffdiff draws m from the same distribution and

again takes their average. Cuffdiff then takes the log ratio of these averages, places this value in a list, and then repeats the procedure

until there are thousands of such log-fold-change samples in the list. The software then makes a similar list, this time using the

expression model for condition B – the null hypothesis assumes both sets of replicates originate from the same condition, but we

do not know whether A or B is the better representative of that condition, so we must draw samples from both and combine

them. To calculate a p-value of observing the real log-fold-change under this null model, we simply sort all the samples and count

howmany of them are more extreme than the log fold change we actually saw in the real data. This number divided by the total num-

ber of draws is our estimate for the p-value.

Cuffdiff 2 reports not only genes and transcripts that are significantly differentially expressed between conditions, but also groups

of transcripts (i.e., the isoforms of a gene) that show significant changes in expression relative to one another. The test for this is

similar to what is described in Trapnell et al., but comparably modified along the lines described above for single genes or transcripts.

Draws of expression are made for each transcript in a group according to the number of replicates in the experiment. These are aver-

aged, and the shift in relative transcript abundance for the draw ismade using the Jensen-Shannonmetric. These draws are added to

a list and used to calculate p-values for significance of observed shifts in relative abundance under the null hypothesis.

Clustering of gene expression profiles was achieved with the csDendro() function from CummeRbund (http://compbio.mit.edu/

cummeRbund/). This function first transforms the FPKMs of all genes in each sample by adding 1 and then takes the logarithm.

Next, it converts each genes transformed expression into a fraction of the total transformed expression. The distances between these

transformed expression profiles are then measured by the Jensen-Shannon metric. The distances are then used to build a dendro-

gram via complete linkage hierarchical clustering using the R function hclust().

Motif Analysis
Predefined sets of genomic regions were scanned for occurrences of motifs contained in the Transfac professional database (2009)

using the FIMOprogram from theMEME suite (Grant et al., 2011). Onlymotifs with at least one known associated human transcription

factor and detected at a significance level of p % 10�5 were used for further analysis. Next, the total number of occurrences was

calculated for each motif. To correct for sequence composition, we trained a Hidden Markov Model on each set of input sequence

sets and generated 10 sets of number and size matched region sets using the inferred probabilities as controls. Subsequently, these

sequence sets were also subjected to the same motif identification procedure and motif enrichment results were averaged over the

10 control runs. We defined the final motif enrichment score as the fraction of total motif occurrences in the region set of interest and

the total number of motif occurrences in the averaged control region set. To determine differentially enriched motifs between region

sets from different hESC-derived cell types, we calculated the fraction of motif scores between the two conditions, retaining only

motifs with a differential enrichment R 1.2.

For the H3K27ac motif analysis, we computed overall motif enrichment scores for each region class separately as described

above. Next, we correlated the motif enrichment scores only focusing on those motifs with scores R 1.2. To that end we multiplied

the motif enrichment score for the cell type of interest with the log2 fold change of the associated transcription factor in that cell

type, giving rise to a new combined motif score. If multiple TFs mapped to one motif, we took the average motif score. For each

cell type we rank ordered the motifs according to their enrichment scores and report the top 20 motifs with their raw motif score

in Figure 5D.

For the H3K4me1 analysis, we wanted to focus on all potential TFBS gaining H3K4me1 and not only those that also become ex-

pressed as in the H3K27ac analysis. First, we again determined the motif enrichment scores over background. To focus on motifs

differentially enriched between the different cell types, we subtracted the mean motif enrichment across hESd cell types for each

motif separately from the enrichment level and rank ordered the motifs. For each cell type, we then report the top 20 enriched motifs

in Figure 6G.
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Figure S1. Additional Characterization of the Differentiated Populations, Related to Figure 1

(A) Median Nanostring expression values (log2) of populations derived from dEC, dME and dEN.

(B) Multidimensional scaling of populations included in differentiation time course.

(C) Representative FACS plots used to isolate differentiated populations. Square boxes (left and middle panels) and line (in right panel) indicate population

collected for further analysis. Approximate percent of population collected is given.

(D) Average Nanostring expression values (log2) of unsorted ectoderm versus CD56high/CD326low sorted dEC cells.

(E) Immunofluorescent staining of SOX17 and PAX6 in day 5 ectoderm population (40x, scale bar equals 200um).
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Figure S2. Overall Chromatin Dynamics and TFS Binding, Including OCT4, SOX2, and NANOG, Related to Figure 2
(A) Total number of regions found in each state, in each population.

(B) Genomic features associated with all regions that change their epigenetic state in at least one cell type.

(C) Venn diagram showing the overlap of identified proximal bivalent domains.

(D) Left: Chromatin statemap for all TFs that are bivalent in hESCs and change their epigenetic state in at least one cell type (n = 400). Right: Hierarchical clustering

ordered heatmap of TF expression (logFC relative to hESCs).

(E) Normalized ChIP-seq tracks of H3K4me3 and H3K27me3 at the ISL1 locus (chr5:50,661,163-50,703,879) indicating H3K27me3 is selectively maintained at

high levels in dEC but not dME, in contrast to dEN, where H3K4me3 increases while H3K27me3 is lost, promoting active transcription. Read counts on y axis are

normalized to 10 million reads and CpG islands (CGI) are indicated in green.

(F) Venn diagram of the overlap between OCT4, NANOG and SOX2 binding sites identified in hESCs (total overlap = 1,556).

(G) Fold enrichment of OCT4, NANOG and SOX2 binding at the NANOG locus in hESCs, and each differentiated population on day 5 of differentiation.

(H) Genomic features of OCT4 binding sites (top) and the associated epigenetic states (bottom) (n = 8,599).

(I) Genomic features of NANOG binding sites (top) and the associated epigenetic states (bottom) (n = 21,186).

(J) Genomic features of SOX2 binding sites (top) and the associated epigenetic states (bottom) (n = 4,922).
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Figure S3. DNA Methylation Dynamics at POU5F1 and Regions Associated with TF Binding, Related to Figure 3

(A) Gain of DNAme at the POU5F1 locus (chr6:31,135,410-31,141,237). NANOG, OCT4, SOX2 ChIP-seq tracks (hESCs only) and DNAme levels in hESCs and

differentiated cell types. Individual CpG methylation values across the locus are displayed using the IGV. The heatmap below shows the DNAme values of in-

dividual CpGs within the gray region. The average DNAme value for the entire highlighted region is shown on the right in red. The TSS is indicated by the arrow.

Gain of DNAme is seen at the distal enhancer, as well as over the TSS, in all three differentiated cell types.

(B) Composite plots of DNAme levels in hESC and differentiated populations across SOX2/OCT4/NANOG binding sites in hESCs. Average CpG methylation

levels were computed for 100bp tiles across an 8kb region centered at the middle of each transcription factor binding site.

(C) Frequency distribution of overlapping DMRs gaining DNAme in the differentiated populations with DNase I hypersensitive sites across 48 ENCODE cell types

(Thurman et al., 2012).
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Figure S4. H3K4me3 and H3K27me3 Enrichment at POU3F1, Related to Figure 4

H3K4me3 and H3K27me3 tracks at the POU3F1 locus (chr1:38,493,152-38,532,618) show lineage-specific resolution of the bivalent domain.
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Figure S5. Genomic Features and Expression Changes at Regions that Gain H3K27ac, Related to Figure 5

(A) Genomic features associated with gain of H3K27ac during differentiation. See key on the right.

(B) Classification of gene expression associated with regions gaining H3K27ac in each germ layer into either upregulated (FDR < 0.05), downregulated (FDR <

0.05), or unchanged.
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Phase HNF4a

Figure S6. HUES64-Derived Hepatoblast-like Population, Related to Figure 6
Immunofluorescent HNF4a stain of hepatoblast-like population after 10 days of differentiation (10x, scale bar = 100 mm).
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Figure S7. Gene Expression Changes at Genes that Gain H3K27me3, Related to Figure 7

Classification of gene expression associated with regions gaining H3K27me3 in each germ layer into either upregulated (FDR < 0.05), downregulated (FDR <

0.05), or unchanged.
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