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Single-cell RNA-seq reveals dynamic
paracrine control of cellular variation

Alex K. Shalek!?3*, Rahul Satija®*, Joe Shuga**, John J. Trombetta®, Dave Gennert®, Diana Lu?, Peilin Chen®, Rona S. Gertner"?,
Jellert T. Gaublomme'-?, Nir Yosef®, Schraga Schwartz®, Brian Fowler?, Suzanne Weaver?, Jing Wang®, Xiaohui Wang?,
Ruihua Ding"?, Raktima Raychowdhury?, Nir Friedman®, Nir Hacohen®°, Hongkun Park>*3, Andrew P. May* & Aviv Regev>’

High -throughput single-cell transcriptomics offers an unbiased approach for understanding the extent, basis and function
of gene expression variation between seemingly identical cells. Here we sequence single-cell RNA -seq libraries prepared
from over 1,700 primary mouse bone-marrow-derived dendritic cells spanning several experimental conditions. We
find substantial variation between identically stimulated dendritic cells, in both the fraction of cells detectably expressing
a given messenger RNA and the transcript’s level within expressing cells. Distinct gene modules are characterized by
different temporal heterogeneity profiles. In particular, a ‘core’ module of antiviral genes is expressed very early by a few
‘precocious’ cells in response to uniform stimulation with a pathogenic component, but is later activated in all cells. By
stimulating cells individually in sealed microfluidic chambers, analysing dendritic cells from knockout mice, and
modulating secretion and extracellular signalling, we show that this response is coordinated by interferon-mediated
paracrine signalling from these precocious cells. Notably, preventing cell-to-cell communication also substantially
reduces variability between cells in the expression of an early-induced ‘peaked’ inflammatory module, suggesting that
paracrine signalling additionally represses part of the inflammatory program. Our study highlights the importance of
cell-to-cell communication in controlling cellular heterogeneity and reveals general strategies that multicellular popu-

lations can use to establish complex dynamic responses.

Variation in component molecules between individual cells'” may
have an important role in diversifying population-level responses®™"',
but also poses therapeutic challenges*’. Although pioneering studies
have explored heterogeneity within cell populations by focusing on
small sets of preselected markers">***'2, single-cell genomics promises
unbiased exploration of the molecular underpinnings and consequences
of cellular variability""".

We previously'® used single-cell RNA-seq to identify substantial
differences in messenger RNA (mRNA) transcript structure and abun-
dance across 18 bone-marrow-derived mouse dendritic cells 4 h after stim-
ulation with lipopolysaccharide (LPS, a component of Gram-negative
bacteria). Many highly expressed immune response genes were distri-
buted bimodally amongst single cells, originating, in part, from closely
related maturity states and the variable activation of a key antiviral
circuit. As these observations focused on a single pathogenic stimulus
and time point, they raised several questions about the causes and roles
of single-cell variability during the innate immune response. Examining
the dynamics of cellular heterogeneity, its pathogen-specificity, and its
intra- and intercellular control required new approaches to profile large
numbers of cells from diverse conditions and genetic perturbations.

Here we use a microfluidic device to help prepare over 1,700 SMART-
seq"” single-cell RNA-seq libraries along time courses of bone-marrow-
derived dendritic cells responding to different stimuli (Fig. 1 and Extended
Data Fig. 1a). Combining computational analyses with diverse pertur-
bations—including stimulation of individual cells in isolated, sealed
microfluidic chambers and genetic and chemical alterations of para-
crine signalling—we show how both antiviral and inflammatory response

modules in dendritic cells are controlled by positive and negative inter-
cellular paracrine signalling that both promote and restrain variation.

Microfluidics-based single-cell RNA-seq
We used the C; single-cell Auto Prep System (Fluidigm; Fig. 1b) and a
transposase-based library preparation strategy to perform SMART-seq"
(Supplementary Information) on 1,775 single dendritic cells, including
both stimulation time courses (0, 1, 2, 4 and 6 h) for three pathogenic
components'® (LPS, PIC (viral-like double-stranded RNA), and PAM
(synthetic mimic of bacterial lipopeptides)) and additional perturba-
tions (Fig. 1, Extended Data Fig. 1 and Supplementary Information).
For most conditions, we captured up to 96 cells (87 = 8 (average * s.d.)),
and generated a matching population control (Fig. 1¢, Supplementary
Information and Supplementary Table 1). We prepared technically matched
culture and stimulation replicates for the 2 h and 4 h LPS stimuli, and
independent biological replicates for the unstimulated (0 h) and 4 h LPS
experiments (Supplementary Information). We sequenced each sample
to an average depth of 4.5 * 3.0 million read pairs, as single-cell expres-
sion estimates stabilized at low read-depths'*'* (Extended Data Fig. 2).
The quality of our libraries was comparable to published SMART-seq
data'>'® (Extended Data Fig. 1b, Supplementary Tables 1 and 2). Overall,
we successfully profiled 831 cells in our initial time courses and 944 cells
in subsequent experiments (Extended Data Fig. 1a and Supplementary
Tables 1 and 2). We excluded another 1,010 libraries with stringent
quality criteria (Supplementary Information and Extended Data Fig. 1¢).
Aggregated in silico, single-cell expression measurements agreed with
the matching population controls (R = 0.87 = 0.05), with correlations
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Figure 1 | Microfluidic-enabled single-cell RNA-seq of dendritic cells
stimulated with pathogenic components. a, Schematic of Toll-like
receptor (TLR) sensing of PAM by TLR2, LPS by TLR4, and PIC by TLR3
(Supplementary Information). b, Microfluidic capture of a single dendritic
cell (top, cell circled in purple) on a C; chip (CAD drawing, bottom).

¢, Time-course expression profiles for induced genes (rows) in dendritic cells

plateauing once we had sampled ~30 cells (Supplementary Informa-
tion, Extended Data Fig. 1d-g). Technical and biological replicates were
reproducible (technical: aggregate R > 0.90, biological: aggregate R >
0.87; Extended Data Fig. 3) and our results were robust to variations in
several aspects of sample preparation (Supplementary Information and
Extended Data Fig. 1h—j). We removed 537 ‘cluster-disrupted” dendritic
cells'®, a distinct subpopulation that matures as an artefact of isolation
and culturing (Supplementary Information and Extended Data Fig. 4),
retaining 1,238 dendritic cells for further analyses (Supplementary Tables 1
and 2).

Variability during immune responses

Principal components analysis (PCA) of gene expression profiles from
all three time courses together showed that dendritic cells spread along
a continuum of expression variation in each principal component (PC)
(Fig. 1c and Extended Data Fig. 1k-n). For example, although PC1 dis-
tinguished early from late time points for each stimulus, its scores also
varied substantially between cells within any single stimulus and time
point (Fig. 1c and Extended Data Fig. 1k-n), suggesting that some cells
were ahead of others, especially early (1-2h).

Consistent with previous studies'®, pathogen-responsive genes parti-
tioned into co-regulated modules based on their population-level expres-
sion profiles (Fig. 1¢, left; Supplementary Information). Genes induced
in cells stimulated with LPS or PIC (cluster I, Fig. 1¢) were enriched for
antiviral defence factors, including interferons and their targets (Bonferroni-
corrected P < 10~°), whereas genes induced in cells stimulated with LPS
or PAM (cluster III, Fig. 1c) were enriched for inflammatory genes and
NF-«B targets (Bonferroni-corrected P < 10~ % Supplementary Table 3).

We used the single-cell gene expression profiles to partition these
main clusters into finer modules (Fig. 1¢, black lines, right; Supplemen-
tary Table 3; Supplementary Information) and applied a resampling
method®® (Supplementary Information, Extended Data Fig. 5d) to iden-
tify four modules significantly associated with the three major PCs (Fig. 1c):
Cluster I4 (core antiviral module; enriched for annotated antiviral and
interferon response genes; for example, Ifit1, Irf7; Bonferroni-corrected
P <10~ Supplementary Table 3, Fig. 1c and Extended Data Fig. 5a)
was significantly associated with PC1; cluster ITI. (peaked inflammatory
module; showing rapid, yet transient, induction under LPS; for example,
Tnf, Il1a, Cxcl2) and cluster IT14 (sustained inflammatory module; exhib-
iting continued rise in expression under LPS; for example, Mmp14,
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(columns) at 0, 1, 2, 4 and 6 h post-stimulation with PAM (green), LPS (black),
or PIC (magenta) within populations (left) and individual cells (right).

Far right: gene projection scores onto the first three principal components
(PCs) (columns); bottom: contributions of each cell (columns) to the first three
PCs (rows).

Marco, 116) were associated with PC2; and cluster ITI;, (‘maturity’ module;
containing markers of dendritic cell maturation; for example, Cd83,
Ccr7, and Ccl22; Supplementary Information) was associated with PC3.

Digital and analogue expression variability

Genes from these four modules displayed distinct patterns of variation
that changed with time and stimulus (Fig. 2a, Extended Data Figs 5 and 6).
For example, early after LPS stimulation, core antiviral response genes
were detectably expressed only in some cells (that is, were bimodal) (Fig. 2a,
Extended Data Figs 5a and 6), but were turned on in most cells between
2 and 4 h (that is, became unimodal). In contrast, many peaked inflam-
matory genes were induced by LPS in all cells early, but were only detec-
table in some cells later (Fig. 2a, Extended Data Figs 5b and 6). Finally,
sustained inflammatory genes were induced early in most cells and per-
sisted at equal or elevated levels later (Fig. 2a, Extended Figs 5¢ and 6).
Some variation patterns changed between stimuli (for example, peaked
inflammatory genes remained detectably expressed in most cells late (6 h)
in PAM), whereas other patterns were similar for distinct pathogens
(for example, the antiviral modules I,-I; under LPS and PIC) (Figs 1
and 2a and Extended Data Fig. 5a—c).

As noted previously from single-cell quantitative real-time polymerase
chain reaction (QRT-PCR) data*', we distinguished two types of het-
erogeneity: (1) digital (on/off) variation, reflecting the percentage of cells
detectably expressing a transcript; and (2) analogue variation, repre-
senting expression level variability among detectably expressing cells.
Using the variance calculated over all cells as a metric of heterogeneity*'¢
conflates these two types of variation. We therefore explicitly modelled
our data using three parameters (Fig. 2b and Extended Data Fig. 7): the
mean (W) and variance (6®) of a gene’s expression among detectably
expressing cells, and the fraction of detectably expressing cells (o)*': in
this scheme, 6 and o signify analogue and digital variation, respectively.

We computed o based on a fixed threshold for appreciable expres-
sion (In(TPM + 1) >1, Supplementary Information and Extended Data
Fig. 7a, f), and then estimated 1 and 6° across appreciably expressing
cells. This three-parameter model effectively described most (91%) of
our single-cell data (Fig. 2¢, d, Supplementary Information and Extended
Data Fig. 7b). Our data did not support fitting with either a single log-
normal or a mixture of two, fully parameterized lognormals (modelling
high and low expression states; Supplementary Information and Extended
Data Fig. 7c—e). Computed o values were consistent between technical
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Figure 2 | Time-dependent behaviours of single cells. a, Single-cell
expression distributions for three genes at each time point after stimulation
with PAM (top, green), LPS (middle, black), or PIC (bottom, magenta).
Distributions are scaled to have the same maximum height. Individual cells are
plotted as bars underneath each distribution. b, Three parameters describing
single-cell gene expression distributions: 1 (green) and 6° (gold), the mean and
variance of RNA abundance in detectably expressing cells, respectively, and

and biological replicates, but pand o* estimates were reproducible only
when genes were expressed in at least 10 or 30 cells, respectively (Sup-
plementary Note, Supplementary Information, Extended Data Figs 2c-e,
7g and 8).

Our nominal o estimates are likely deflated due to the detection limits
of single-cell RNA-seq. Indeed, we observe higher o values when exam-
ining our existing RNA fluorescence in situ hybridization (RNA-FISH)
data'® (Extended Data Fig. 6g—j). By comparing our single-cell RNA-
seq and RNA-FISH, we estimate that the transcript detection efficiency
for our single-cell RNA-seq is ~20%, consistent with previous reports'***.
We and others™>** have also observed a strong relationship between the
average expression of a gene and its probability of detection (Extended
Data Fig. 7h). We thus used a conservative null model, where this rela-
tionship results solely from technical limitations (Supplementary Informa-
tion, Extended Data Fig. 7h), and determined the maximum likelihood
estimate of o (o ) for each gene after correcting for this relationship
(Fig. 2e, Extended Data Fig. 7j-1 and Supplementary Information).
From this analysis, we estimate that ~45% of core antiviral genes and 30%
of peaked inflammatory genes are significantly bimodal in at least one
measured time point in the LPS response (likelihood ratio test (LRT),
Bonferroni-corrected P < 0.01; Supplementary Information and Ex-
tended Data Fig. 7i).

Chromatin mark levels correlate with a

Asthe presence of a chromatin mark is, by definition, discrete in a single
cell, we reasoned that population ChIP-seq profiles of active histone
marks (for example, histone 3 lysine 27 acetylation (H3K27ac)) should
more closely reflect the fraction of cells with detectable transcripts (o)
than population-level expression. Supporting this hypothesis, the observed
o for a gene was strongly correlated (mean R for binned data = 0.89;
Supplementary Information) to its promoter-associated ChIP-seq

o (blue), the fraction cells with detectable expression (at In(TPM + 1) >1).

¢, Examples of fit (grey) and measured Tnf expression distributions (black).
d, The values of 1, 6%, and o (y axes, left to right) computed for Tnfat each time
point (x axis). Units for p and o2 are In(TPM + 1). e, Maximum likelihood
estimate o (o). Shown are the likelihood functions (dotted blue line) for Tnf
(matching c) used to determine o (red line; vertical black line: nominal o
Supplementary Information).

density (collected under identical conditions*), even within a fixed pop-
ulation expression range (Fig. 3a top/middle, rows). In contrast, a gene’s
population-level expression was not correlated (mean R for binned data
= —0.02) to H3K27ac promoter levels within a fixed o range (Fig. 3a
top, middle; columns). We note that H3K27ac and population-level ex-
pression remained correlated within a fixed range of p (instead of a,
Fig. 3b). A partial correlation analysis focussed on either all immune
response genes or ‘bimodal’ genes (LRT, P < 0.01) yielded similar results
(P> 0.1, after controlling for o, Fig. 3¢). Digital variation did not correlate
with histone 3 lysine 4 trimethylation (H3K4me3) levels (Fig. 3a, bot-
tom), in line with previous observations** that H3K4me3 is not as tightly
correlated with active transcription. Emerging single-cell epigenomic
technologies® should help to further explore this relationship.

Dynamic responses via shifts in a and p
An average (population) increase in the expression of bimodally expressed
genes may represent changes in the amount of transcript made by express-
ing cells (shifts in p), the proportion of expressing cells (shifts in o), or
both. For each pair of consecutive time points, we examined the propor-
tion of genes in each module with a significant change in: (1) p (Wilcoxon
rank-sum test); (2) o (LRT, controlling for the aforementioned confound-
ing relationship between average expression and detection efficiency,
Supplementary Information); or (3) both. Given our limitations in esti-
mating o and 1, we only considered genes that were annotated as bimodal
in at least one time point in the relevant time course and expressed in
atleast 10 cells in both time points (Supplementary Information). We
excluded the unstimulated time point when most immune response
genes were not yet expressed.

Under LPS stimulation, core antiviral and sustained inflammatory
genes had the strongest increases in o (alone or with p) at early time
points (Fig. 3d, top; Extended Data Fig. 5e, f), and transitioned to high
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Figure 3 | Dynamic changes in variation during stimulation. a, b, The
relationship between expression and H3K27ac binding depends on « (a), but
not on 1 (b). Plots show average promoter read density (black high; white low;
scale bar, bottom) for H3K27ac in LPS 2 h (a, b, left) and unstimulated cells
(a, middle; b, right), or H3K4me3 in 2 h LPS (a, right) in genes corresponding to
each of 10 quantile bins of population expression (y axis) and each of 10
quantile bins of o (a, x axis) or pt (b, x axis) (Supplementary Information). ¢, Bar
plots showing P values of correlation between average expression levels and
K27ac only for immune response genes either as is (red) or when controlling for
p (blue) or o (green). Matching R values for all genes: 0.29 (LPS 1h, as is),

and unimodal expression by 4 h (Figs 1 and 2). In contrast, o decreased
at later time points for peaked inflammatory genes, especially from 2 to
4h (Fig. 3d, middle; Extended Data Fig. 5f). The temporal patterns in
core antiviral gene activation were shared between LPS and PIC. How-
ever, unlike in LPS, peaked inflammatory gene expression did not dimin-
ish under PAM, and we did not observe statistically significant decreases
in o atlater time points (Fig. 3d). These coherent shifts suggest that var-
iability reflects regulated immune response phenomena, rather than
unconstrained stochastic transcription.

Intercellular determinants of variation

Both differences in intracellular components'™ and changes in the
cellular microenvironment” can affect heterogeneity. In particular,
slow diffusion of cytokines and chemokines could lead to local vari-
ation in intercellular signals. As the core antiviral module is enriched
for targets of IFN- 3, we speculated that upstream variability in IFN-f
exposure may drive its heterogeneity (median o = 0.52; 30% of genes
significantly bimodal, P < 0.01, LRT, Extended Data Fig. 9), and thus
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0.18 (LPS 1 h, controlling for ), 0.06 (LPS 1 h, controlling for o), 0.33 (LPS 2 h,
as is), 0.23 (LPS 2 h, controlling for p), 0.08 (LPS 2 h, controlling for o)

d, Dynamic changes in o and | in each module. Bar plots showing, for each
module in select conditions (annotated on top), the fraction of genes (y axis)
with a significant change only in o (P < 0.01, likelihood ratio test, blue), only in
1 (P <0.01, Wilcoxon test, green), or in both (each test independently, light
blue), at each transition (x axis). The number of genes over which the
proportion is calculated is marked on top of each pair of bars (Supplementary
Information, Extended Data Fig. 5f).

profiled cells 2 h after IFN-f stimulation. Supporting our hypothesis,
cells stimulated with IFN- for 2 h exhibited sharply reduced digital
variation in the core antiviral module (Fig. 4a, median o = 0.82; 7% of
genes significantly bimodal).

Precocious expressers of antiviral genes
We next explored the cellular source of interferon in the native LPS
response. At 2 h following LPS, Ifub1 was bimodally expressed (P < 10~
LRT) and correlated with the expression of the core antiviral module
(Extended Data Fig. 9a, d, e). This observation, together with the sup-
pression of digital variation under an IFN-P stimulus, suggested that,
inresponse to LPS, a few cells may first produce (Extended Data Fig. 9d)
and secrete a wave of interferon, leading to a gradual coordination of
the core antiviral module at later time points via paracrine signalling.
To test this hypothesis, we computed a core antiviral activation score
(Supplementary Information) for each cell and compared scores across
the LPS time course (Fig. 4b, Extended Data Fig. 9e, f and 10a and Sup-
plementary Information). Although most cells activated the module

Single cells
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Figure 4 | IFN-p feedback drives heterogeneity in the expression of core
antiviral targets. a, Single-cell expression distributions for Rsad (top) and
Stat2 (bottom) after stimulating with LPS (left, black) or IFN-f3 (right, magenta)
for 2h. b, The core antiviral score (y axis; Supplementary Information,
Extended Data Figs 9f and 10a) for each LPS-stimulated cell at each time point
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(x axis) and cells simulated for 2 h with IFN-P (on far right). Two precocious
cells (yellow asterisk) have unusually high antiviral scores at 1 h LPS.

¢, RNA-FISH confirms the presence of rare precocious responders (arrow;
yellow asterisk), positive for both Ifnb1 (magenta) and Ifit1 (cyan) 1 h after LPS
stimulation. Grey, cell outlines. Scale bar represents 25 pm.
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between 2 h and 4 h, we discovered two cells with strong core antiviral
activation at 1 h (Fig. 4b, ¢, Extended Data Fig. 9f, i, yellow asterisks).
We verified the existence and scarcity of these precocious cells 1 h after
LPS stimulation by RNA-FISH (Fig. 4c, Supplementary Information);
here, appreciable Ifit] and Ifnbl co-expression was detected in only
0.8% of cells (23 of 2,960, mRNA count =5 copies, P=2 X 10",
proportion test). These precocious cells were indistinguishable from
the others except in their expression of the ~100 core antiviral genes
(Extended Data Fig. 9j, k). We observed similar early responding cells
following PIC or PAM stimulation (Extended Data Fig. 9f, h and 10a).

Although these precocious cells are reminiscent of the ‘sentinels’ that
have been reported in viral infections and stimulations of fibroblasts***
(Supplementary Note, Supplementary Information), we note that, in
those studies, variable response may be partially due to differences in
cells’ ability to sense and respond to the primary stimulus (for example,
dueto lack of viral sensing or replication). In contrast, all dendritic cells
rapidly sense and respond to LPS, as evidenced by the unimodal activa-
tion of peaked inflammatory genes at early time points (Extended Data
Figs 5b-d, 10a; Fig. 2a, Tnf).

Intercellular communication and variation

To examine whether the rare precocious cells were required for coordi-
nating the core antiviral response, we developed an approach to stimu-
late cells in the absence of cell-to-cell communication. Modifying the
standard C, workflow, we captured individual unstimulated dendritic
cellsina C, chip (Supplementary Information), washed in LPS-containing
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Figure 5 | Microfluidic blocking of cell-to-cell signalling affects response
heterogeneity in the core antiviral and peaked inflammatory modules.

a, Experimental blocking of cell-to-cell communication. Left: C; chip; right:
actuation of microfluidic valves (red bars), following on-chip LPS stimulation,
isolates individual cells in sealed chambers, preventing intercellular signalling.
b, Expression of the genes (rows) in the core antiviral (I4, top rows) and
peaked inflammatory (III., bottom rows) modules in single cells (columns)
from the in-tube (left) and on-chip (right) stimulations. ¢, Gene expression
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media, and then immediately sealed each microfluidic chamber to isolate
stimulated cells individually for 4 h (on-chip stimulation, Supplementary
Information, Fig. 5a). Key experimental conditions, including cell den-
sity, were similar between the in-tube and on-chip experiments (Sup-
plementary Information).

In the absence of cell-to-cell communication, core antiviral module
genes were bimodally expressed (Fig. 5), with only 8 cells (20%) exhib-
iting weak activation of the core antiviral module at 4h (Fig. 5b-d,
Extended Data Fig. 9e), probably mimicking the precocious cells observed
in-tube at 1 h. This observation suggests an approximate bound for the
number of cells capable of autonomously inducing a response by 4 h.
Removing cell-to-cell communication also downregulated the expres-
sion of maturation markers in all cells and some of the sustained inflam-
matory genes (Extended Data Fig. 10a), although other key inflammatory
genes were unaffected.

Surprisingly, blocking intercellular communication also sharply altered
the single-cell expression of peaked inflammatory genes (Fig. 5b-d).
Genes encoding key inflammatory cytokines (for example, Tnf, Cxcll)
switched from bimodal (o0 = 0.77, 0.56, respectively) to unimodal (o = 1.0,
0.91; LRT for corresponding oy g: P <10™% P <107 '3, respectively)
expression on-chip (Fig. 5b, ¢). Indeed, a large portion of the peaked
inflammatory genes that were bimodal (LRT P < 0.01) after a 4h LPS
stimulation in-tube shifted to unimodal expression on-chip (Extended
Data Fig. 10a, b; P < 0.01, hypergeometric test), indicating that cell-to-
cell signalling is required for dampening the peaked inflammatory
program at later time points following LPS. The opposite behaviours
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distributions for representative genes from the core antiviral (top) and peaked
inflammatory (bottom) modules in the in-tube (left, black) or on-chip (right,
blue) 4 h LPS stimulation. d, Violin plots of, top to bottom, the core antiviral
(Supplementary Information, top), peaked inflammatory (middle), and
sustained inflammatory (bottom) scores for individual cells from the
stimulation conditions listed on the x axis. Yellow asterisks: the two precocious
cells from Fig. 4 (Extended Data Fig. 10a).
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of the core antiviral and peaked inflammatory modules indicate that
intercellular communication can have opposing effects on variation for
different gene modules within the same cell.

IFN-p and peaked inflammatory genes

On-chip isolation conflates the effects of different paracrine signals
and the loss of cell-to-cell contact. To distinguish these situations, we
first profiled dendritic cells from Interferon receptor knockout mice
(Ifnarl -/ 7). As expected, and consistent with previous findings'®, anti-
viral gene expression was undetectable at 4 h in all Ifnar]1 ™'~ dendritic
cells, implying that even the precocious cells require autocrine interferon
feedback to activate and sustain their core antiviral responses (Extended
Data Fig. 10g). This is further supported by the decoupling of the expres-
sion of Ifnb1 and the core antiviral module in Ifnarl '~ dendritic cells
stimulated with LPS for 2 h (Extended Data Fig. 9e).

Removal of interferon signalling also strongly affected the peaked
inflammatory module: after 4h of LPS stimulation, Ifnarl~'~ cells
showed a similar increase in the fraction of activated cells as was seen
in the on-chip experiment (Fig. 5d, Extended Data Fig. 10a, d, g), sug-
gesting that the absence of interferon signalling, rather than changes
in cell-to-cell contact®, was the major driver. Furthermore, dendritic
cells lacking Statl, a gene encoding a key transcription factor medi-
ating interferon responses®, also exhibited increased activation and
decreased digital variation in peaked inflammatory genes (P < 0.01;
hypergeometric test; Fig. 5d and Extended Data Fig. 10a, e, g, ). Con-
versely, the sustained inflammatory module was not appreciably affec-
ted by the absence of interferon signalling (Fig. 5d and Extended Data
Fig. 10a, g), implying a different mechanism for its downregulation on-chip.

Second paracrine wave for downregulation
Interferon response targets can cross-inhibit inflammatory gene expres-
sion either through the direct formation of repressive complexes, for
example, the STAT1-inclusive ISGF-3, or by inducing the production
of anti-inflammatory cytokines®. The few cells with on-chip antiviral
activation exhibited no change in peaked inflammatory gene expression
(Fig. 5b). This suggests that the repression of peaked inflammatory
genes, unlike antiviral activation, is not directly downstream of IFN-f
signalling, but rather may be mediated by a second IFN-f/STAT1-
dependent paracrine signal. Peaked induction through two asynchron-
ous paracrine signals is reminiscent of the activation and contraction of
keratinocytes following wounding and immune infiltration, respectively®'.
To test this hypothesis further, we added brefeldin A (GolgiPlug), a
secretion inhibitor, either simultaneously with LPS (0 h) orat 1 or 2h
after stimulation, and measured single-cell RNA-seq profiles at 4h
(Fig. 5d, Extended Data Fig. 10a—c). Inhibiting secretion at the time of
LPS addition strikingly dampened the antiviral response, similar to the
on-chip experiment. However, adding brefeldin A at 2 h did not affect
the activation of the core antiviral module and adding it at 1 h had only
a modest effect. This indicates that the first hour represents the crucial
paracrine window for this response. In contrast, for the peaked inflam-
matory module, addition at each of the three time points resulted in the
module remaining aberrantly activated at 4 h, as on-chip. Collectively,
these experiments show that paracrine interferon signalling events before
the 1 h time point are crucial for antiviral activation, whereas subsequent,
separate signalling is responsible for the desynchronized dampening of
peaked inflammatory gene expression (Supplementary Note, Supplemen-
tary Information).

Discussion

Here we have analysed how gene expression variation between indivi-
dual dendritic cells changes with stimulus and time to dissect the regu-
lation of heterogeneity across this immune response. Our statistical
analysis reveals that changes in digital (on/off) variation can encode a
diversity of temporal response profiles (Fig. 3d, Extended Data Fig. 5f).
For example, late-induced core antiviral genes are very weakly expressed
early, on average, but are highly expressed in a few precocious cells; the
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progressive dampening of peaked inflammatory genes originates, in
part, from changes in the fraction of cells detectably expressing these
transcripts, rather than a uniform, gradual decrease in their expression
in all cells.

Such complex average responses can be generated not only through
intricate intracellular circuits in each cell, but also through intercel-
lular communication between cells, as we show for both modules. For
example, we uncovered a small number of precocious cells that express
IfnblI and core antiviral genes as early as 1 h after LPS stimulation, and
through the secretion of IFN-f, help activate core antiviral genes in
other cells to coordinate the population response. These cells are indis-
tinguishable from the rest, except in their expression of the core antiviral
module (Extended Data Fig. 9j, k), and yet are crucial for an efficient
and timely population response (Supplementary Note, Supplementary
Information).

IFN-f signalling also dampens a subset of induced inflammatory
genes at later time points, and our brefeldin A (GolgiPlug) experiments
suggest that a secondary, IFN-B-dependent signal, is involved (Extended
Data Fig. 10j,k). This is consistent with a model in which IFN-f secreted
by a few cells induces the expression and secretion of secondary anti-
inflammatory cytokines from a subset of cells, which, in turn, attenuate
the peaked inflammatory responses of their neighbours. Computational
analyses, genetic perturbations and recombinant cytokine experiments
suggest that IL-10 may be involved in this second wave of negative
signalling (Extended Data Fig. 10h, Supplementary Table 4), but further
experiments are needed to fully elucidate the mechanism (Supplemen-
tary Note, Supplementary Information). One involved component may
be the RNA degradation factor ZFP36 (TTP), whose targets are enriched
in the peaked inflammatory module™.

The ability of precocious cells to influence others via paracrine sig-
nalling may be an efficient strategy for quorum sensing’, but also may
be perilous. If the activation threshold is too low, a few stochastically
responding cells could induce an inappropriate immune response. Indeed,
this is observed in autoimmune diseases like systemic lupus erythema-
tosus (SLE), in which excess IFN-f3 production potentiates auto-reactive
dendritic cell activation®***. In contrast, excessively stringent thresholds
may limit rapid responses to a viral infection, or the dampening of
chronic inflammation (for example, in rheumatoid arthritis or ulcera-
tive colitis’***). Thus, individual cells probably place tight controls on
the regulation of key cytokines, preferring different induction strat-
egies under different stimuli to maximize the balance between respon-
siveness and control. Indeed, similar population-level IfnbI expression
in LPS/PIC (Extended Data Fig. 9¢) stems from different underlying
phenomena: a substantial fraction of cells express the IfnbI transcript
moderatelyat2h LPS (o0 = 0.35, 1 = 5.1), whereas just a few cells express
Ifnb1 very highly at 2 h PIC (o = 0.07, i = 6.31; uncorrelated with the
cell’s activation of the antiviral response**”’: Extended Data Fig. 9e).

Using microfluidics, we achieved the statistical power needed to track
transcriptome-wide changes in single-cell expression variation across a
variety of conditions, as well as to identify functionally important, rare
responses. Microfluidics also allowed us to finely control the stimulation
of our cells. Similar and improved techniques will be essential for char-
acterizing other rare sub-populations, such as cancer stem cells, and for
studying heterogeneous clinical samples and tissues. Further innova-
tions in massively parallel manipulation and profiling of single cells will
continue to improve our understanding of the rich diversity in, and dy-
namic functional communities that constitute, multicellular populations.

METHODS SUMMARY

Bone-marrow-derived mouse dendritic cells were prepared as previously described'®
and stimulated with pathogenic stimuli for specified time periods. The C; Single-Cell
Auto Prep System (Fluidigm) was used to perform SMARTer (Clontech) whole
transcriptome amplification (WTA)">'*** on up to 96 individual cells. WTA products
were then converted to Illumina sequencing libraries using Nextera XT (Illumina)'®.
RNA-seq libraries were also made from 10,000 cells from each parent population
(population control). Each sample was sequenced on an Illumina HiSeq 2000 or
2500, and expression estimates (transcripts per million; TPM) for all UCSC-annotated
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mouse genes were calculated using RSEM?®. Data were further analysed as described
in the Supplementary Information. Additional experiments were performed using
RNA-FISH (Panomics), on-chip isolated stimulation, knockout mice, secretion
blockers (GolgiPlug, BD Biosciences), protein synthesis blockers (cycloheximide,
Sigma), and recombinant cytokines. Full Methods and any associated references
are provided in the Supplementary Information.

Online Content Any additional Methods, Extended Data display items and Source
Data are available in the online version of the paper; references unique to these
sections appear only in the online paper.
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Extended Data Figure 1 | Single-cell RNA-seq of hundreds of dendritic cells.
a, Overview of experimental workflow. b, Shown are read densities for seven
representative genes (two housekeeping genes (Rpl3 and Actb) and five
immune response genes (Ifub , Ifitl, Ccr7, Tnf, Marco)) across 60 single cells
(blue) and one population control of 10,000 cells (grey; bulk population) after a
4h LPS treatment. ¢, Distribution of failure scores for all single cells. Single
cells with failure scores above 0.4 were discarded (see Supplementary
Information). d-g, Comparisons of expression estimates for the average single
cell and the bulk population. d, Scatter plots showing for each gene the relation
between the average single-cell expression (y axis) and bulk population

level expression (x axis) for each of four time points following LPS stimulation
(1, 2,4 and 6h, left to right). e, The Pearson correlation coefficients (y axis)
of each comparison, as in d, for each of the time points and stimuli presented in
Fig. 1, as a function of the number of cells captured in the respective experiment
(x axis). f, Scatter plots showing the residual (population-level expression
minus the single cell average) in a LPS 1h experiment (x axis) versus the
residual in each of 3 other experiments (y axis, left to right): LPS 6 h, PIC 4h
and PAM 2 h. g, The Pearson correlation coefficient (y axis) between the
bulk population level expression and the single-cell expression average when a
different number of sub-sampled cells (x axis) is included in the single-cell

ARTICLE

average. h, i, Effects of Hoechst dye and periodic mixing on mRNA expression.
h, Comparable expression levels after 4 h LPS with the addition of small
amounts of Hoechst to aid in cell counting (x axis) and when no dye is used
(y axis), when looking at all genes (left) or only immune response genes (right).
i, Comparable expression levels after 4 h LPS with hourly mixing (x axis) or
with no mixing (y axis), when looking at all genes (left) or only immune
response elements (right). j, Core antiviral, peaked inflammatory, and
sustained inflammatory module activation scores for a 0.1X LPS stimulation.
Shown are violin plots of the scores (y axis) for the core antiviral
(Supplementary Information, top), peaked inflammatory (Supplementary
Information, middle), and sustained inflammatory modules (Supplementary
Information, bottom) for each cell in (left to right): LPS 0 h, 1X (100 ng ml™Y)
LPS 4h, and 0.1X (10ngml~") LPS 4 h. k-n, PCA of stimulated dendritic
cells. k, First two principal components (or PCs) from a PCA performed on
the LPS stimulation time course. From top to bottom: unstimulated/LPS 0 h,
LPS 1h, LPS 2h, LPS 4h, LPS 6 h. I-n, PCAs (left) and the distributions of
scores (right) for each of the first three PCs for samples collected after
stimulation with LPS (1), PAM (m), or PIC (n), for 1 (yellow), 2 (blue),

4 (grey) and 6 (red) hours. A single PCA was performed for all cells in all three
time courses.
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Extended Data Figure 2 | Effects of shallow read depth on expression
estimates. a, b, A million reads per cell are sufficient to estimate expression
levels. a, Scatter plot for a single cell (from Shalek et al.'®) showing the relation
between expression estimates calculated using 30 M reads (x axis) or a
sub-sample of 1 M reads (y axis). b, Scatter plots for six different dendritic cells
stimulated for 4 h with LPS. Each plot shows the relation between expression
estimates calculated using all reads (x axis; number of reads marked on axis
label) or a sub-sample of 1 M reads (y axis). In all cases, R > 0.99. Note that
although, in principle, no gene should be estimated as present only in a
subsample but not the full data set, this does occur for a very small number of
genes (for example, four genes in cell 3), representing a nuanced technical
error in RNA-seq estimation. Consider two expressed genes, A and B, from
distinct loci, but with a short stretch of sequence identity. At low sequencing
depth, if reads only map to the shared region, estimation tools, such as RSEM*

8 10 0 2 4 6 8 10 0 2 4 6 8 10
2-10.5M Reads (Average)

(used here), can guess erroneously which gene is expressed, such that additional
sequencing depth can ‘flip’ the assignment of an uncertain read from gene A
to gene B. These cases are extremely rare, and have a negligible effect.

c-e, A million reads per cell are sufficient to estimate 1, 5% and o.. Scatter plots
showing the relation between o (c), p (d), and o2 (e) values estimated using
10 M reads per cell (on average; x axis) or a sub-sample of 1 M reads per cell
(y axis) from RNA-seq libraries prepared from individual bone-marrow-
derived dendritic cells stimulated for 4 h with LPS. ¢, For almost all genes,

1 M reads are sufficient to estimate o. For a very small fraction (<0.1%) of
weakly expressed genes, estimates of o are improved with increased sequencing
depth. For p (d) and o2 (e), estimates are plotted for all genes (left), only
genes detected in more than 10 cells (middle), or only those genes detected in
more than 30 cells (right).
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Extended Data Figure 3 | Technical and biological reproducibility.

a—d, Scatter plots showing the relationship between the average single-cell
expression estimates in either of two technical replicates (LPS 2h (a), LPS4h
(b)) or two biological replicates (unstimulated/LPS 0 h (c), LPS 4 h (d)) for all
genes (top), immune response genes (middle), or non-immune response genes
(bottom). e, f, QQ plots (top) and MA plots (bottom) showing the similarity
in expression estimates for the two LPS 2 h technical replicates (e) or the two
LPS 4h technical replicates (f). Plots are provided across all genes (left),
non-immune response genes (middle), or immune response genes (right).

g h, QQ plots (top) and MA plots (bottom) showing the similarity in
expression estimates for all cells (including cluster-disrupted cells) in the two

LPS 0 h/unstimulated biological replicates (g) or the two LPS 4 h biological
replicates (h) across either all genes (left), non-immune response genes
(middle), or immune response genes (right). Note, that slight variations in the
fraction of cluster-disrupted cells and activation state of one of the two 0 h
samples results in mild deviations between immune response gene estimates in
those biological replicates. i, j, PCA for the two LPS 4 h technical replicates.

i, The first two principal components (PC1 and PC2, x and y axis, respectively)
of a PCA from the two LPS 4 h stimulation technical replicates (blue: replicate 1;
red: replicate 2). j, The distributions of scores for cells from each

of the two technical replicates on each of the first five PCs (left to right: PC1
to PC5).
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Extended Data Figure 4 | Cluster disruption. a, Single-cell expression
distributions for SerpinB6b (a positive marker of cluster disruption) and Lyz1
(a negative marker of cluster disruption) at each time point (marked on top)
after stimulation with LPS (all cells included, see Supplementary Information).
Distributions are scaled to have the same maximum height. b, Difference in
mRNA expression as measured by qRT-PCR (with a Gapdh control) between
Lyz1 or SerpinB6b in cells pre-sorted before stimulation on the presence or
absence of CD83 expression (CD83+ and CD83 ", respectively), a known cell
surface marker of cluster-disrupted cells (see Supplementary Information).
Pre-sorted cells were then either unstimulated (blue) or stimulated (red) with
LPS for 4 h. ¢, Expression of cluster-disruption markers does not change with

ARTICLE

stimulation. gRT-PCR showing the difference between Gapdh (control) and
LyzI or SerpinB6b expression in cells pre-sorted on Cd83 either in the presence
or absence of simulation with LPS. d, PCA showing the separation between
maturing’ (blue dots) and cluster-disrupted (red dots) cells. e, Expression of
cluster disruption markers for cells stimulated with LPS on-chip. For each cell
(black dot) stimulated with LPS on-chip, shown are the expression levels

(x axis) of SerpinB6b (cluster disruption cell marker, left) and LyzI (normal
maturing cell marker, right) versus its antiviral score (y axis). With one
exception, the cells are clearly maturing and not cluster-disrupted. Red shading:
range of expression in cluster-disrupted cells.
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Extended Data Figure 5 | Time-dependent behaviours of single cells from
different modules and stimuli. a-c, For each of the three key modules: core
antiviral, I4 (a), peaked inflammatory, III. (b), and sustained inflammatory,
1114 (c) shown are wave plots of all of its constituent genes in bone-marrow-
derived dendritic cells stimulated with PAM (top), LPS (middle), or PIC
(bottom) for 0, 1, 2, 4 and 6 h (left to right). x axis: expression level,

In(TPM + 1); y axis: genes; z axis: single-cell expression density (proportion
of cells expressing at that level). Genes are ordered from lowest to highest
average expression value at the 4 h LPS time point. d, Contributions of each
module to measured variation. Significance of the contribution of modules
I,-14 and III,-IT1; from Fig. 1 to the variation measured throughout the
stimulation time course. Shown is the P value (Mann-Whitney test) of the
tested association between each gene module and the first three PCs, calculated
using a statistical resampling method (see Supplementary Information).

Only the core antiviral, maturity, and peaked/sustained inflammatory clusters
show statistically significant enrichments with the three PCs. e, Gene modules
show coherent shifts in single-cell expression. Shown are heat maps of scaled

Time
Fraction changing in: [l o [] a:&p [l 1

o (left), g (middle), and c* (right) values (colour bar, bottom) in each time
course (LPS, PAM, PIC) for the genes in each of the three key modules (rows,
modules marked on left). Heat maps are row-normalized across all three
stimuli, with separate scalings for each of the three parameters, to highlight
temporal dynamics. Genes are clustered as in Fig. 1. f, Dynamic changes in
variation during stimulation for each module. For each module (rows) and
stimulus (columns), shown are bar plots of the fraction of genes (y axis) with a
significant change only in o (by a likelihood ratio test, P < 0.01, blue), only in p
(Wilcoxon test, P < 0.01, green), or in both (each test independently, light
blue), at each transition (x axis), in different conditions (marked on top),
separated by whether they increase or decrease during that transition. In each
module and condition, the proportion is calculated out of the genes in the
module that are significantly bimodal (by a likelihood ratio test) in at least
one time point during the LPS response and are expressed in at least 10 cells in
both conditions. Their number is marked on top of each bar; conditions with 3
or fewer genes changing are semi-transparent.
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(top, black curves) or RNA-FISH (black histograms; no smoothing) in either
unstimulated cells (LPS 0h) or cells stimulated with LPS for 1, 2, 4 or 6 h.
g-j, Determining the detection limit of single-cell RNA-seq by comparison
to RNA-FISH. For each of 25 genes, we compared single-cell RNA-seq data
(y axis, this study) to RNA-FISH data (x axis, from Shalek et al.) based on either
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their p values (g, h) or o values (i, j), in which for RNA-FISH, expressing cells
were defined for 1 or o calculation at different thresholds (from left to right:
atleast 1,4, 5,10 or 20 copies per cell). g, i, Data from all 25 genes. h, j, Data after
excluding probes from 5 cluster-disrupted gene markers (blue; Ccl22, Cer7,
Irf8, SerpinB6b, Stat4), which are less comparable since there are more
cluster-disrupted cells in RNA-FISH experiments, and 2 low quality probes
(grey; Pkm2, Fus) that showed very low expression in RNA-FISH, but had high
expression in both single cell and population-level RNA-seq experiments.
SPE (square-root of percent explained, top) represents the square-root of the
total variance in the RNA-seq parameter explained by the RNA-FISH
parameter, under the y = x model compared to a constant fit (that is, y = ¥).
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Extended Data Figure 7 | Fitting gene expression distributions. a, Flow
chart of model fitting. Shown are the key steps in fitting the 3-parameter model.
b, Examples of cases where fitting a multimodal distribution is required.
Single-cell expression distributions for (top to bottom) Carl3, Rgs1, Ms4a6c
and KIf6 at (left to right) 1, 2, 4, and 6 h (marked on top) after stimulation with
LPS. Distributions are scaled to have the same maximum height. Data: black
lines; Bimodal fits: grey lines; Multimodal fits: blue lines. P values (colour-
coded) calculated using a goodness-of-fit test (a low P value rejects the fit; see
Supplementary Information). c-e, Reproducibility of gene-specific fitting of the
undetected mode, when fitting a mix of two normal distributions to all data
points, including those with In(TPM + 1) < 1. ¢, d, Scatter plot showing the
correlation between ; and 1, estimates for the two LPS 4 h technical replicates
(Supplementary Information), where 1, and p, are the two component means
(in decreasing order of magnitude) of the two mixed normal distributions.
Estimates for |1, correlate poorly between technical replicates, particularly
when focusing on genes for which |1, is greater than 1 (e), suggesting that the
current data set does not support the use of this additional fit parameter.

f, Robustness of o estimates to small deviations in the threshold. Scatter plots
showing the correlation between o estimates determined when using a cut-off
of In(TPM + 1) = 1 (x axis) versus when using a cut-off of In(TPM + 1) = 0.25
(y axis, left); 0.5 (y axis, middle) or 2 (y axis, right) for the LPS time course
(top to bottom: 1h, 2h, 4h and 6 h). g, Saturation curves for estimates of 1, %,
and o Box plots depicting the Pearson correlation coefficient between o (top),
pt (middle), or o* (bottom) in two LPS 4 h technical replicates, as a function of

the number of cells randomly drawn from each replicate (full details in
Supplementary Information). Plots are shown for all genes (left), as well as
those detected in more than 10 (middle) or 30 cells, (right) in both replicates
(full data sets). h, i, Correcting for the relationship between mean expression
and average detection. h, The probability of detecting a transcript (y axis) in a
cell as a function of p (x axis). Black, grey curves are two illustrative cells from
the LPS 4 h time point. i, Differences in oy g, a stringently-corrected MLE
estimate of o (Supplementary Information), across the LPS time course. Shown
are the box plots of o g values (y axis) for bimodally expressed genes
(determined by a likelihood ratio test, Supplementary Information) at each
time point (1, 2, 4, and 6 h) following LPS stimulation (x axis), as well as for the
on-chip 4 h LPS stimulation, for each of the core antiviral (left), peaked
inflammatory (middle) and sustained inflammatory (right) modules. Stars
represent intervals where there is a significant difference in a parameter
between two consecutive time points, as determined by a Wilcoxon rank sum
test (single star: P< 10~ % double star: P < 10~>). j-1, Estimating an upper
bound on o using a likelihood test. For each of three transcripts (Ifit1 (j); Rsad2
(k); and Cxcl1 (1)), shown are their expression distributions (red, left) and the
matching likelihood function for a stringent upper estimate of o (blue dots,
right), when considering a null model where expression is distributed in a
lognormal fashion and any deviations are due to technical detection limits
(Supplementary Information). Red vertical line: o 5 ; black vertical line:
nominal 0. Vertical green bars signify the nominal estimation of o, representing
the fraction of cells with detected expression of a transcript.
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Extended Data Figure 8 | Reproducibility of estimated p, 6 and o
parameters. a-f, Reproducibility of estimated y1, 5* and o parameters between
technical replicates. Scatter plots showing the relation between the estimated
o (a), p (b), and 6? (c) values for the two unstimulated/LPS 0 h technical
replicates. For pt (b) and o7 (c), estimates are plotted for all genes (farthest on
the left), as well as (left to right) for genes only detected in more than 10, 20, 30,
40 or 50 cells, respectively. d—f, show the same plots for the two LPS 4h
technical replicates. g, h, Reproducibility of estimated j1, 5> and o parameters
between biological replicates. Scatter plots showing the relation between the
a(g), 1 (h),and o2 (i) values estimates for the two LPS 2 h biological replicates.
For it (h) and o2 (i), estimates are plotted for all genes (farthest on the left),
as well as (left to right) for genes only detected in more than 10, 20, 30, 40 or 50
cells, respectively. j-1, show the same plots for the two LPS 4 h biological
replicates. m, n, Relationship between per-gene errors for 1, 6> and o and the
number of cells in which the gene’s expression is detected, or its bulk expression
level. Scatter plots displaying the differences in the 6> (left), u (middle) and

o (right) estimates for each gene between technical replicates for LPS 2h (m) or
LPS 4h (n) (y axis) as a function of either the number of cells in which the
transcript is detected (x axis, for L and 7), or the transcript’s bulk expression
level (TPM, x axis, for o). Notably, o2 (left) estimates saturate (denoted bya
magenta line and shaded box) after ~30 detectable events, whereas |1 estimates
saturate after ~10. Dashed orange line: 95% confidence interval. o, p, Changes
in 1, 6* and o between time points are significant as compared to null
models from both technical and biological replicates. Shown are the cumulative
distribution functions (CDF) for shifts in p (left), * (middle), and o (right)
between 2 hand 4 h (red CDF) for the core antiviral (top), peaked inflammatory
(middle), and sustained inflammatory (bottom) modules compared to a null
model (black CDF) derived from either technical (o) or biological (p) replicates
(Supplementary Information). In the vast majority of cases, the changes
between time points are significant, as assessed by a Kolmogorov-Smirnof (KS)
test (P value of test in the upper left corner of each plot).
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Extended Data Figure 9 | Ifnb1 expression, production, and precocious
cells. a, b, Ifnbl mRNA expression and the effect of IFN-f3 on variation.

a, Single-cell expression distributions for the Ifnb1 transcript at each time point
(top) after stimulation with PAM (top, green), LPS (middle, black), or PIC
(bottom, magenta). Distributions are produced with the density function in
R with default parameters, and scaled to have the same maximum density.

b, For each of three modules defined in Fig. 1 (core antiviral, top; peaked
inflammatory, middle; sustained inflammatory, bottom), shown are bar plots of
the fraction of genes (y axis) with a significant change only in o (by a likelihood
ratio test, P < 0.01, blue), only in p (Wilcoxon test, P < 0.01, green), or in
both (each test independently, light blue) between the 2 h LPS stimulation and
the 2 h IFN-f stimulation separated by whether they increase or decrease
during that transition. In each module and condition, the proportion is
calculated out of the genes in the module that are significantly bimodal (by a
likelihood ratio test) in at least time point during the LPS response and are
expressed in at least 10 cells in both conditions. Their number is marked on top
of each bar. ¢, d, Ifnbl mRNA expression patterns and effect of cycloheximide.
¢, From top to bottom, population average Ifnbl mRNA expression (top),
single-cell average Ifnbl mRNA expression (second to top), o (second to
bottom) and p (bottom) estimates for Ifnb1 for each stimulation condition in
Fig. 1. Grey star at 6 h for PIC denotes uncertainty due to the small number of
cells captured at that time point. d, Shown are box plots of the core antiviral
scores (population level, see Supplementary Information) after a 4h LPS
stimulation either where cycloheximide was added at the time of stimulation
(right, blue), or during a standard 4 h LPS control (left, green). Core antiviral
expression is dramatically decreased by the addition of cycloheximide,
suggesting that newly produced protein is needed to initiate the antiviral
response. e, Relationship between core antiviral gene expression and Ifnbl
mRNA expression during the LPS, PAM and PIC stimulation time courses and
in follow-up experiments. Shown are the expression of core antiviral genes
(heat maps: rows, gene; columns, cells) for cells stimulated for 0, 1, 2,4 or 6 h
(left to right) with LPS (top), PAM (middle), or PIC (bottom). Beneath each
heat map, grey bars depict the core antiviral score (middle panel, see

Supplementary Information) and blue dots show Ifnbl mRNA expression for
each cell in every heat map. f-k, Identifying the precocious cells. f, Core
antiviral scores for cells stimulated with LPS, PIC, or PAM. Shown are violin
plots of the core antiviral module scores (Supplementary Information, y axis)
for each cell from time course experiments (from left: 0, 1, 2, 4 and 6 h) of
dendritic cells stimulated with LPS (top), PIC (middle) or PAM (bottom). Two
precocious cells (yellow stars, top panel) have unusually high antiviral scores at
1h LPS (yellow stars, top); similarly precocious cells can be seen in PIC at 1 h
and 2 h (orange stars, middle) or in PAM at 2 h (turquoise stars, bottom).

g, Precocious cells in all three responses are typical maturing cells. PCA
showing the separation between maturing (blue dots) and cluster-disrupted
(red dots) cells (top), as well as only maturing (middle) or only cluster-
disrupted (bottom) cells (all as also shown in Extended Data Fig. 4d). The
precocious cells from each of the responses are marked as stars (colours as in
(f)), and all fall well within the maturing cells. h, Precocious cells in all three
responses express Lyzl and do not express SerpinB6b. Shown are mRNA
expression distributions for SerpinB6b (cluster disruption cell marker, left)
and Lyzl (normal maturing cell marker, right) in LPS 1 h, PIC1h and 2h, and
PAM 1 h (top to bottom). The typical range for expression in cluster-disrupted
cells is shaded in red. The precocious cells from each of the responses are
marked as stars (colours as in (f)), and all fall well within the maturing cells.
i, Normal quantile plots of the expression of genes from the core (cluster I, left)
and secondary (cluster I, right) antiviral clusters at 1 h LPS. The two precocious
cells (yellow stars) express unusually high levels of core antiviral genes (left)
but not of secondary genes (right). j, k, The precocious cells are only
distinguished by the expression of ~100 core antiviral genes. Shown are the
distributions of scores for each of the first six PCs (right) for samples collected
after stimulation with LPS for 1 h with (j) or without (k) the inclusion of
core antiviral genes. Precocious cells (vertical red bars), normally distinguished
by the third and fourth principle components (j), become indistinguishable
from all other cells if the ~ 100 core antiviral genes are excluded (k) before
performing the PCA.
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Extended Data Figure 10 | Characterizing the precocious cells. a, Core
antiviral, peaked inflammatory, and sustained inflammatory module scores
during the LPS time course and follow-up experiments. Shown are violin plots
of the scores (y axis) for the core antiviral (Supplementary Information, top),
peaked inflammatory (Supplementary Information, middle), and sustained
inflammatory (Supplementary Information, bottom) modules for cells in each
of the experiments (from left to right): LPS 0 h, LPS 1 h, LPS 2h, LPS 2h
technical replicate 1, LPS 2 h technical replicate 2, LPS 4 h, LPS 4 h technical
replicate 1, LPS 4 h technical replicate 2, LPS 4 h biological replicate, LPS 6 h,
IFN-f 2 h, on-chip unstimulated, on-chip LPS 4 h, LPS 4 h with GolgiPlug at
0h, LPS 4 h with GolgiPlug at 1h, LPS 4 h with GolgiPlug at 2h, LPS 4 h with
Ifnar_/ ~ dendritic cells, and LPS 4 h with Stat1 ~’~ dendritic cells. Yellow stars:
the two precocious cells at 1 h LPS. b, Changes in expression and variation
during stimulation in the on-chip 4 h LPS stimulation. For genes in the (from
top to bottom) core antiviral, maturity, peaked inflammatory and sustained
inflammatory modules, shown are bar plots of the fraction of genes (y axis) with
a significant change only in o (by a likelihood ratio test, P < 0.01, blue), only in
p (Wilcoxon test, P < 0.01, green), or in both (each test independently, light
blue) between the 4 h on-chip LPS stimulation and the 4 h in-tube LPS
stimulation separated by whether they increase or decrease during that
transition. In each module and condition, the proportion is calculated out of the
genes in the module that are significantly bimodal (by a likelihood ratio test)
in at least one time point during the LPS response and are expressed in at least
10 cells in both conditions. Their number is marked on top of each bar. c-f, Bar
plots, as in b, for a 4 h wild-type LPS stimulation (in-tube) and either a 4h
in-tube LPS stimulation where GolgiPlug was added 2 h after LPS (c), a4 h LPS
stimulation of Ifnaf/f dendritic cells (d), a 4h LPS stimulation of Stat1™'~
dendritic cells (e), or a 4h LPS Stimulation of Tnfr_/_ dendritic cells (f).

g, Genetic perturbations alter expression and variation in different
inflammatory and antiviral modules. Shown is the expression of the genes
(rows) in, from top to bottom: the core antiviral (Iy), maturity (III,), peaked
inflammatory (III.), and sustained inflammatory (III3) modules in single
cells (columns) in, from left to right: the in-tube, on-chip, Ifnarl~'~, Stat1 ™'~
and Tnfr '~ conditions. Yellow/purple colour scale: scaled expression values
(z-scores). h, Scores of the peaked inflammatory module for Ifnar '~ dendritic
cells with recombinant cytokines. Shown are box plots of the peaked
inflammatory module scores (Supplementary Information, y axis) for three
population-level replicates of a 4 h LPS stimulation of Ifnar '~ dendritic cells to
which a recombinant cytokine (x axis) has been added at 2 h after stimulation.
Notably, adding IL-10 significantly reduces the peaked inflammatory module.
i, Stat] knockout affects expression and variation of peaked inflammatory
genes. Shown are expression distributions for five peaked inflammatory
genes after 4h of LPS stimulation in each of three conditions: in-tube
stimulation of wild-type dendritic cells (control; left), on-chip stimulation of
wild-type cells (no cell-to-cell signalling; middle), and a stimulation of dendritic
cells from Stat1~'~ mice (performed in-tube; right). j, k, Population-level
paracrine signalling enhances and coordinates the core antiviral response while
dampening and desynchronizing the peaked inflammatory ones. j, Gene
network model showing how positive IFN-f signalling induces the antiviral
response and reduces its heterogeneity, while simultaneously activating
negative paracrine feedback, possibly including IL-10, which dampens the
peaked inflammatory cluster and increases its heterogeneity. k, Cell population
model showing how positive and negative paracrine signalling alter antiviral
(magenta) and inflammatory (green) gene expression variability across cells.
Grey denotes no expression.
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