Integrated single-cell analysis of multicellular immune dynamics during hyperacute HIV-1 infection

  • Biology
  • Computational Methods
  • Genomics
  • Immunology
  • Infectious Disease
  • Statistics
  • Sam Kazer
  • Toby Aicher
  • Shaina Carroll
  • José Ordovas-Montañes
  • Vincent Miao
  • Carly Ziegler
  • Sarah Nyquist
  • Alex K. Shalek
  • Kazer et al.▾
    Kazer, S.W., Aicher, T.P., Muema, D.M., Carroll, S.L., Ordovas-Montanes, J., Miao, V.N., Tu A.A., Ziegler, C.G.K., Nyquist, S.K., Wong, E.B., Ismail, N., Dong, M., Moodley, A., Berger, B., Love, J.C., Dong, K.L., Leslie, A., Ndhlovu, Z.M., Ndung'u, T., Walker, B.D.#, Shalek, A.K.#
  • Nature Medicine
  • March, 2020
Biology
Computational Methods
Genomics
Immunology
Infectious Disease
Statistics
Sam Kazer
Toby Aicher
Shaina Carroll
José Ordovas-Montañes
Vincent Miao
Carly Ziegler
Sarah Nyquist
Alex K. Shalek

Abstract

Cellular immunity is critical for controlling intracellular pathogens, but individual cellular dynamics and cell–cell cooperativity in evolving human immune responses remain poorly understood. Single-cell RNA-sequencing (scRNA-seq) represents a powerful tool for dissecting complex multicellular behaviors in health and disease and nominating testable therapeutic targets. Its application to longitudinal samples could afford an opportunity to uncover cellular factors associated with the evolution of disease progression without potentially confounding inter-individual variability. Here, we present an experimental and computational methodology that uses scRNA-seq to characterize dynamic cellular programs and their molecular drivers, and apply it to HIV infection. By performing scRNA-seq on peripheral blood mononuclear cells from four untreated individuals before and longitudinally during acute infection, we were powered within each to discover gene response modules that vary by time and cell subset. Beyond previously unappreciated individual- and cell-type-specific interferon-stimulated gene upregulation, we describe temporally aligned gene expression responses obscured in bulk analyses, including those involved in proinflammatory T cell differentiation, prolonged monocyte major histocompatibility complex II upregulation and persistent natural killer (NK) cell cytolytic killing. We further identify response features arising in the first weeks of infection, for example proliferating natural killer cells, which potentially may associate with future viral control. Overall, our approach provides a unified framework for characterizing multiple dynamic cellular responses and their coordination.

Integrated single-cell analysis of multicellular immune dynamics during hyperacute HIV-1 infection