Granulomas are complex cellular structures composed predominantly of macrophages and lymphocytes that function to contain and kill invading pathogens. Here, we investigated the single-cell phenotypes associated with antimicrobial responses in human leprosy granulomas by applying single-cell and spatial sequencing to leprosy biopsy specimens. We focused on reversal reactions (RRs), a dynamic process whereby some patients with disseminated lepromatous leprosy (L-lep) transition toward self-limiting tuberculoid leprosy (T-lep), mounting effective antimicrobial responses. We identified a set of genes encoding proteins involved in antimicrobial responses that are differentially expressed in RR versus L-lep lesions and regulated by interferon-γ and interleukin-1β. By integrating the spatial coordinates of the key cell types and antimicrobial gene expression in RR and T-lep lesions, we constructed a map revealing the organized architecture of granulomas depicting compositional and functional layers by which macrophages, T cells, keratinocytes and fibroblasts can each contribute to the antimicrobial response.

Mucosal associated invariant T (MAIT) cells are a class of innate-like T cells that utilize a semi-invariant αβ T cell receptor to recognize small molecule ligands produced by bacteria and fungi. Despite growing evidence that immune cells at mucosal surfaces are often phenotypically and functionally distinct from those in the peripheral circulation, knowledge about the characteristics of MAIT cells at the lung mucosal surface, the site of exposure to respiratory pathogens, is limited. HIV infection has been shown to have a profound effect on the number and function of MAIT cells in the peripheral blood, but its effect on lung mucosal MAIT cells is unknown. We examined the phenotypic, functional, and transcriptomic features of major histocompatibility complex (MHC) class I-related (MR1)-restricted MAIT cells from the peripheral blood and bronchoalveolar compartments of otherwise healthy individuals with latent Mycobacterium tuberculosis (Mtb) infection who were either HIV uninfected or HIV infected. Peripheral blood MAIT cells consistently co-expressed typical MAIT cell surface markers CD161 and CD26 in HIV-negative individuals, while paired bronchoalveolar MAIT cells displayed heterogenous expression of these markers. Bronchoalveolar MAIT cells produced lower levels of pro-inflammatory cytokine IFN-γ and expressed higher levels of co-inhibitory markers PD-1 and TIM-3 than peripheral MAIT cells. HIV infection resulted in decreased frequencies and pro-inflammatory function of peripheral blood MAIT cells, while in the bronchoalveolar compartment MAIT cell frequency was decreased but phenotype and function were not significantly altered. Single-cell transcriptomic analysis demonstrated greater heterogeneity among bronchoalveolar compared to peripheral blood MAIT cells and suggested a distinct subset in the bronchoalveolar compartment. The transcriptional features of this bronchoalveolar subset were associated with MAIT cell tissue repair functions. In summary, we found previously undescribed phenotypic and transcriptional heterogeneity of bronchoalveolar MAIT cells in HIV-negative people. In HIV infection, we found numeric depletion of MAIT cells in both anatomical compartments but preservation of the novel phenotypic and transcriptional features of bronchoalveolar MAIT cells.

Infection with SARS-CoV-2, the virus that causes COVID-19, can lead to severe lower respiratory illness including pneumonia and acute respiratory distress syndrome, which can result in profound morbidity and mortality. However, many infected individuals are either asymptomatic or have isolated upper respiratory symptoms, which suggests that the upper airways represent the initial site of viral infection, and that some individuals are able to largely constrain viral pathology to the nasal and oropharyngeal tissues. Which cell types in the human nasopharynx are the primary targets of SARS-CoV-2 infection, and how infection influences the cellular organization of the respiratory epithelium remains incompletely understood. Here, we present nasopharyngeal samples from a cohort of 35 individuals with COVID-19, representing a wide spectrum of disease states from ambulatory to critically ill, as well as 23 healthy and intubated patients without COVID-19. Using standard nasopharyngeal swabs, we collected viable cells and performed single-cell RNA-sequencing (scRNA-seq), simultaneously profiling both host and viral RNA. We find that following infection with SARS-CoV-2, the upper respiratory epithelium undergoes massive reorganization: secretory cells diversify and expand, and mature epithelial cells are preferentially lost. Further, we observe evidence for deuterosomal cell and immature ciliated cell expansion, potentially representing active repopulation of lost ciliated cells through coupled secretory cell differentiation. Epithelial cells from participants with mild/moderate COVID-19 show extensive induction of genes associated with anti-viral and type I interferon responses. In contrast, cells from participants with severe lower respiratory symptoms appear globally muted in their anti-viral capacity, despite substantially higher local inflammatory myeloid populations and equivalent nasal viral loads. This suggests an essential role for intrinsic, local epithelial immunity in curbing and constraining viral-induced pathology. Using a custom computational pipeline, we characterized cell-associated SARS-CoV-2 RNA and identified rare cells with RNA intermediates strongly suggestive of active replication. Both within and across individuals, we find remarkable diversity and heterogeneity among SARS-CoV-2 RNA+ host cells, including developing/immature and interferon-responsive ciliated cells, KRT13+ “hillock”-like cells, and unique subsets of secretory, goblet, and squamous cells. Finally, SARS-CoV-2 RNA+ cells, as compared to uninfected bystanders, are enriched for genes involved in susceptibility (e.g., CTSL, TMPRSS2) or response (e.g., MX1, IFITM3, EIF2AK2) to infection. Together, this work defines both protective and detrimental host responses to SARS-CoV-2, determines the direct viral targets of infection, and suggests that failed anti-viral epithelial immunity in the nasal mucosa may underlie the progression to severe COVID-19.

Influenza virus infections are major causes of morbidity and mortality. Research using cultured cells, bulk tissue, and animal models cannot fully capture human disease dynamics. Many aspects of virus-host interactions in a natural setting remain unclear, including the specific cell types that are infected and how they and neighboring bystander cells contribute to the overall antiviral response. To address these questions, we performed single-cell RNA sequencing (scRNA-Seq) on cells from freshly collected nasal washes from healthy human donors and donors diagnosed with acute influenza during the 2017-18 season. We describe a previously uncharacterized goblet cell population, specific to infected individuals, with high expression of MHC class II genes. Furthermore, leveraging scRNA-Seq reads, we obtained deep viral genome coverage and developed a model to rigorously identify infected cells that detected influenza infection in all epithelial cell types and even some immune cells. Our data revealed that each donor was infected by a unique influenza variant and that each variant was separated by at least one unique non-synonymous difference. Our results demonstrate the power of massively-parallel scRNA-Seq to study viral variation, as well as host and viral transcriptional activity during human infection.

Toxoplasma gondii chronically infects a quarter of the world’s population, and its recrudescence can cause life-threatening disease in immunocompromised individuals and recurrent ocular lesions in the immunocompetent. Acute-stage tachyzoites differentiate into chronic-stage bradyzoites, which form intracellular cysts resistant to immune clearance and existing therapies. The molecular basis of this differentiation is unknown, despite being efficiently triggered by stresses in culture. Through Cas9-mediated screening and single-cell profiling, we identify a Myb-like transcription factor (BFD1) necessary for differentiation in cell culture and in mice. BFD1 accumulates during stress and its synthetic expression is sufficient to drive differentiation. Consistent with its function as a transcription factor, BFD1 binds the promoters of many stage-specific genes and represents a counterpoint to the ApiAP2 factors that dominate our current view of parasite gene regulation. BFD1 provides a genetic switch to study and control Toxoplasma differentiation and will inform prevention and treatment of chronic infections.

Toxoplasma gondii chronically infects a quarter of the world’s population, and its recrudescence can cause life-threatening disease in immunocompromised individuals and recurrent ocular lesions in the immunocompetent. Chronic stages are established by differentiation of rapidly replicating tachyzoites into slow-growing bradyzoites, which form intracellular cysts resistant to immune clearance and existing therapies. Despite its central role in infection, the molecular basis of chronic differentiation is not understood. Through Cas9-mediated genetic screening and single-cell transcriptional profiling, we identify and characterize a putative transcription factor (BFD1) as necessary and sufficient for differentiation. Translation of BFD1 appears to be stress regulated, and its constitutive expression elicits differentiation in the absence of stress. As a Myb-like factor, BFD1 provides a counterpoint to the ApiAP2 factors which dominate our current view of parasite gene regulation. Overall, BFD1 provides a genetic switch to study and control Toxoplasmadifferentiation, and will inform prevention and treatment of chronic infection.

To complement and inform the analysis of scRNA-Seq datasets, we create methods to simultaneously profile additional cellular characteristics of interest (e.g. genome, epigenome, or proteome), independently, or in combination with, scRNA-Seq. For a given technique or system, we ask what additional information would help us better interpret our scRNA-Seq results and develop methods to collect these data. These novel methods often map ancillary information into a DNA-based readout that can be coanalyzed with cellular mRNA or developing/applying microdevices. Recently, we have developed a method for integrated mRNA and protein detection that leverages proximity extension assays (Genshaft et al. 2016). To extract the information content from these novel datasets more effectively, we also formulate new computational methods and analyses.

We explore how the extracellular milieu impacts intracellular decision-making by experimentally controlling the cellular microenvironment or leveraging naturally occurring sources of variation within a tissue. Here, we employ solutions that include controlled culture conditions with cells (Shalek et al., 2014) or organoids, chemical or genetic perturbations (Kumar et al., 2014), and constant microfluidic perfusion. We are also developing in silico approaches that are powered by in-situ cellular tagging techniques. In each instance, we aim to understand the degree to which extracellular environments modulate, and can be used to rationally control, the responses of individual cells or the overall distribution thereof, with an eye toward engineering ensemble responses.

We use microdevices, coupled with functional signal readouts, to create and study defined cell-cell interactions. By explicitly enumerating cell type, number, and additional functional properties (e.g., cytokine secretion), we model ensemble behaviors, looking for synergies and antagonisms­. These genetic signatures, along with those collected via our other platforms, provide a unique and essential reference for deconvolving behaviors in complex ensembles. We are also using genetic tracing strategies to examine differences between interacting and random cell pairs in vivo, and are developing computational methods (Tirosh et al., 2016) to identify putative interactions from scRNA-Seq data.

Vaccines remain the most effective tool to prevent infectious diseases. Here, we introduce an in vitro booster vaccination approach that relies on antigen-dependent activation of human memory B cells in culture. This stimulation induces antigen-specific B cell proliferation, differentiation of B cells into plasma cells, and robust antibody secretion after a few days of culture. We validated this strategy using cells from healthy donors to retrieve human antibodies against tetanus toxoid and influenza hemagglutinin (HA) from H1N1 and newly emergent subtypes such as H5N1 and H7N9. Anti-HA antibodies were cross-reactive against multiple subtypes, and some showed neutralizing activity. Although these antibodies may have arisen as a result of previous influenza infection, we also obtained gp120-reactive antibodies from non–HIV-infected donors, indicating that we can generate antibodies without prior antigenic exposure. Overall, our novel approach can be used to rapidly produce therapeutic antibodies and has the potential to assess the immunogenicity of candidate antigens, which could be exploited in future vaccine development.

Our immune system collaborates with environment- and diet-dependent commensals to establish and maintain homeostasis, and to defend against pathogenic threats (e.g., viruses, bacteria, fungi). We are interested in understanding the nature and impact of these interactions on host tissues, as well as potential avenues to modulate them for therapeutic or prophylactic ends.

Illustrative questions and areas of study include:

  1. How do microbial composition and byproducts influence cellular differentiation and phenotypic diversity within the gut?
  2. How do pathogens (e.g. HIV and TB) impact target cell phenotypes and overall tissue function in the context of acute and systemic infection?
  3. To what degree can therapeutic intervention (e.g. cART for HIV-1) re-establish homeostatic setpoint (i.e. composition and function)?

We have several projects and collaborations (local and international) actively exploring these and related questions in vaccine design that have both inspired, and take advantage of, some of our unique tools to profile thousands of single cells from limited clinical samples anywhere in the world, and develop clinically relevant hypotheses.

A diverse array of mechanisms—including genetic mutations, environmental triggers, and diet—can alter cell function and reduce tissue stability, ultimately leading to malignancy, autoimmunity, or immunodeficiency. By identifying which cells these factors affect and in what ways, we aim to develop targeted therapeutic interventions in areas such as cancer, allergy, and inflammatory bowel disease.

Motivating questions that drive our research include:

  1. How do the coordinated interactions between epithelial and immune populations inform barrier tissue function in the context of homeostasis, inflammation and malignancy?
  2. How can we leverage information across systems to derive a set of unifying principles of cellular ecology in health and disease?

Current projects aim to contrast the cellular microenvironments of healthy, inflamed, and malignant (Tirosh et al., 2016; Patel et al., 2014) tissues to examine inflammation-induced changes and the drivers of malignant transformation, as well as to identify which cells remember prior insult. We are similarly profiling aberrant immune behaviors in immune privileged tissues, such as the nervous systems. As in our host-microbial studies, our goal is to identify common features shared across different immune-related diseases that we can probe further in natural (tissues, models) and engineered (patterned cells and cellular structures, organoids) ensembles.

Encounters between immune cells and invading bacteria ultimately determine the course of infection. These interactions are usually measured in populations of cells, masking cell-to-cell variation that may be important for infection outcome. To characterize the gene expression variation that underlies distinct infection outcomes and monitor infection phenotypes, we developed an experimental system that combines single-cell RNA-seq with fluorescent markers. Probing the responses of individual macrophages to invading Salmonella, we find that variation between individual infected host cells is determined by the heterogeneous activity of bacterial factors in individual infecting bacteria. We illustrate how variable PhoPQ activity in the population of invading bacteria drives variable host type I IFN responses by modifying LPS in a subset of bacteria. This work demonstrates a causative link between host and bacterial variability, with cell-to-cell variation between different bacteria being sufficient to drive radically different host immune responses. This co-variation has implications for host-pathogen dynamics in vivo.